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Abstract

Quantum fluids are a fascinating state of matter, permitting extraordinary insights into the

behaviour of macroscopic quantum systems. Most strikingly, they possess the property of

superfluidity, enabling inviscid flow. Whilst irrotational in nature, singularities in the fluid

provide localised vorticity in the form of quantised vortex filaments. Interaction between

these vortex structures provides rich dynamical behaviour which is interrogated within the

first part of this thesis. Furthermore, one expects the equilibrium and dynamical proper-

ties of a trapped superfluid system to vary in response to changes in dimensionality.

Whilst dimensionality crossovers have previously been considered both experimentally and

theoretically, the nature of the dimensional crossover between the 2D and 3D phase tran-

sitions in a trapped Bose gas remains relatively unexplored and forms the secondary focus

of this thesis.

Initially, we consider the effects of disordered potentials, protuberances and remnant vor-

tices for a zero temperature weakly interacting Bose gas under rotation. Focusing partic-

ularly on a rough bucket potential we draw parallels with superfluid helium experiments,

where such effects must be considered. Our findings elucidate important insights on the

effects of vortex proliferation in the spin-up dynamics of a quiescent system towards the

simple and well-reproduced vortex lattice structure.

We then go on to discuss the effects of dimensionality on the finite temperature weakly

interacting Bose gas, this time concentrating on a hybridised optical trap that allows one

to modify the trapping strength along a singular direction. Utilising the stochastic pro-

jected Gross-Pitaevskii equation (SPGPE) we validate our approach based on previous

findings at the dimensional extremes before considering in greater detail, the precise na-

ture of the crossover region. We introduce a novel mixed basis numerical scheme to solve

the SPGPE in the hybridised geometry. Using this, we identify and numerically extract a

phase transition temperature as a function of dimensionality using a collection of equilib-

rium statistics. Building on this work, we subsequently conduct a numerical investigation

into the propagation of sound as a function of dimensionality in the trapped Bose gas.

We discover new insights on the properties of the sound across the phase transition at the

dimensional extremes. We then extend our work into the dimensionality crossover region,

paying particular attention to the behaviour of the sound at the phase transition critical

point.
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Introduction

In recent decades, atomic Bose gases have proven to be an invaluable tool in the under-

standing and investigation of many-body systems [1, 2]. The successful implementation

of highly-controllable trapping geometries, the tuning of inter-atomic interactions and the

advances of in-situ visualisation of Bose gases have allowed them to be used as a plat-

form for the discovery of novel phenomena. One potential avenue that remains relatively

unexplored is the effect of dimensionality on phase transitions of the Bose gas. Phase

transitions are ubiquitous and omnipresent in the universe around us. However, it is not

often the case that we have direct control over the topology of a system in order to explore

such phase transitions as a function of dimensionality. Recent experimental developments

allow us to confine Bose gases in homogeneous and semi-homogeneous trapping geometries

[3–5], permitting the direct investigation of the aforementioned scenario. Let us begin, by

briefly introducing the theory of Bose-Einstein condensation.

Bose-Einstein condensation

The theory of quantum mechanics is split between two constituent particles: fermions and

bosons. In fact, particle distinguishability lies at the very core of quantum mechanics. The

Heisenberg uncertainty principle stipulates that particles cannot be considered as discrete

entities and instead have a wave associated with them, known as wave-particle duality. In

the language of quantum physics, this wave has a statistical nature and is described by

means of a wavefunction. When exchanging two particles, the sign of the wavefunction is

of profound importance. If the wavefunction maintains its sign, it is known as symmetric,

and if it changes then it is antisymmetric. In the former case, corresponding to bosons,

particles are free to macroscopically occupy the same quantum state. In the latter case,

corresponding to fermions, particles are instead subject to the Pauli-exclusion principle

which precludes particles from occupying the same quantum state within a system.

The theory of Bose-Einstein condensation arose when Bose predicted that a photon

gas could accumulate into and macroscopically occupy the lowest accessible energy state

[6]. Einstein later generalised this theory to apply to bosons in general [7] and together,

they proposed a new exotic state of matter: the Bose-Einstein condensate. The theory
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predicts that under specific conditions of mass and density, a large proportion of bosonic

particles will accumulate into the same lowest quantum energy state, resulting in a giant

matter wave, known as the condensate. In the context of dilute cold atoms, the atomic

densities necessary for Bose-Einstein condensation require temperatures on the nanokelvin

scale1.

For non-interacting dilute Bose gases at high temperatures, the collisions between

atoms are largely absent. Typically, the comparison is drawn to a system of colliding

billiard balls. In 3D, the average distance between two given particles can be defined

d = 3
!

V/N where N is the number of atoms and V is the volume containing them.

As the energy of the system is lowered, typically through a reduction in temperature,

this distance decreases. Close to quantum-degeneracy, where the classical description of

particles is replaced by the discrete nature of quantum mechanics, these particles behave

more like wavepackets. At this point, the average inter-particle spacing becomes of the

same order of the uncertainty on the position of individual particles, as determined by the

de Broglie wavelength

λdB =

"
2π!2
mkBT

. (1)

Here ! = 1.055 × 10−34Js, kB = 1.38 × 10−23JK−1 are the reduced Planck constant and

Boltzmann constant respectively. We also introduce m and T to reflect the particle mass

and temperature. In fact, once d ! λdb, the overlapping nature of the quantum particles

permits a collective behaviour allowing them to behave as a singular macroscopic quantum

object, the Bose-Einstein condensate (BEC).

Experimental realisations of Bose-Einstein condensation

Many decades after the predictions of Bose and Einstein, one of the first observations of a

pure Bose-Einstein condensate was eventually realised by Anderson et al [9], performed at

the JILA2 laboratory, where the supercooling of approximately 107 87Rb atoms produced

a small almost-pure condensate of 103 atoms at 170nK. The thermal velocity profile from

this study is shown in Fig. 1, where we observe a clear narrowing in the velocity distri-

bution with decreasing temperature, signposting a clear onset of condensation. Almost

simultaneously, the group of Ketterle [10] at MIT3 formed a pure condensate comprised of
23Na, evidenced by a bimodality in the measured velocity distribution, containing up to

5×105 atoms. A Bose-Einstein condensate from spin-polarised Lithium was also achieved

1Within ultra-dense neutron stars, the same phenomenon is thought to occur at temperatures of ap-
proximately 109K [8].

2Joint Institute for Laboratory Astrophysics, National Institute of Standards and Technology and Uni-
versity of Colorado.

3Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology.
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(A) (B) (C)

Figure 1: [From [9]. Reprinted with permission from AAAS]. False-colour thermal velocity distri-
bution of a sample of expanded Rubidium atoms as they are cooled below the critical temperature
of Bose-Einstein condensation. (A) Before a condensate emerges. (B) Mixed (thermal) condensate.
(C) Nearly pure condensate.

that same year [11] from the group of Hulet at Rice University4. These breakthrough

experiments were largely made possible by advancements in both laser [12–16] and evap-

orative [17–19] cooling techniques. The condensation of Alkali atoms is made possible

by a combination of these techniques. Initially, atoms are laser-cooled by three pairs of

counter-progagating laser beams whereby atom-light collisions scatter photons causing a

“frictional force” which, on-average, blueshifts photons. As a result, the scattered light

carries away more energy than has been absorbed by the atoms, resulting in a net cool-

ing of the system. Once sufficiently cool temperatures have been reached, the lasers are

switched off and replaced with a magnetic trapping confinement. Evaporative cooling

is then performed through a progressive lowering of trapping depth, which permits the

escape of high-energy atoms whilst the remainder rethermalise to increasingly cooler tem-

peratures. Following the experimental breakthrough of BEC, interest in this quantum

state of matter has intensified significantly. Whilst experiments initially utilised static

harmonic traps [9–11], modern experimentalists have devised both magnetic and optical

trapping apparatus that permit supreme control on the topology and the dynamics of

a trapped gas. These allow the formation of BECs in novel and interesting geometries.

One of the first deviations from static harmonic trapping was performed by Henderson

et al [20] using a scanning tweezer beam. This study pioneered the generation of novel

trapping geometries, and importantly was the first instance of a dynamic spatiotempo-

rally variable trapping potential. Soon thereafter, other international groups were able

to obtain quasi-uniform three-dimensional trapping [3] with spatial light modulators and

4Physics Department and Rice Quantum Institute, Rice University, Houston, Texas 77251-189.
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recently the application of digital micromirror devices [4] allowing full arbitrary control

over trapping potentials. Interactions for a dilute ultracold bosonic gas are dominated

by s-wave collisions at the scattering length as which characterises the effective interac-

tion lengthscale between two atoms. A negative scattering length implies that atoms are

attracted to each other, leading to a system collapse without a sufficiently mitigating trap-

ping potential. This collapse has been experimentally observed and coined the Bose-nova

[21, 22]. Instead, a positive scattering length imparts repulsive inter-atomic interactions,

decreasing the density of the gas. To ensure the gas remains sufficiently dilute, we require

this scattering length to be smaller than the inter-particle distance d. The experimental

tuning of the scattering length through Feshbach resonances [23] for a given atomic species

is a largely solved problem and gives extraordinary control over BEC experiments. The

combination of arbitrary trapping potentials and control over the atomic interactions for

a given system constitute an experimental and theoretical armamentarium to thoroughly

investigate the properties of BEC.

Thesis motivation

In this thesis we scrutinise the effects of confining geometries on the equilibrium charac-

teristics and dynamics of a dilute Bose gas. We focus in particular on two main systems

of interest: A rough-bucket geometry, designed to mimic experimental studies of liquid

helium, and secondly a planar box trap under transverse confinement which can be arbi-

trarily varied.

Firstly, we investigate the effects of disorder and roughness on the nucleation and prolif-

eration of vorticity in a zero temperature quantum fluid as it is spun up from a quiescent

state into the rotational ground state solution. The resultant hexagonal vortex lattice

structure that is generated encapsulates the paradigm of superfluidity, as the quantised

vorticity structure portrayed is in stark contrast to the behaviour of classical fluids. So

far, little research has been conducted on the mechanisms at play in the dynamical evo-

lution towards this state. To this end, we utilise the Gross-Pitaevskii formalism to model

a superfluid system in the presence of a hard-walled bucket potential whose topology has

been altered to embody roughness under various rotational frequencies. We investigate

the timescales of relaxation towards the expected vortex lattice structure of quantum vor-

tices in the rotating frame. In addition, we track vortex filaments and their topological

information as they diffuse inwardly from the turbulent boundary layer prior to aligning

along the axial direction. We find evidence to support the proposition of a vortex-free

region around the boundary and show the importance of interactions and reconnection

events for vortex filaments as they form something as straightforward as the vortex lat-

tice structure. We go on to modify the disorder of our system and investigate the effects
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of protuberances and remnant vorticity, as an analogue to experimental uncertainty and

unaccounted vorticity in bucket-like confining potentials for superfluid experiments.

The second avenue we explore is the characteristic and systematic response of a system

to a varied dimensionality and temperature. More specifically, we probe the effects of

dimensionality on the identification of the phase transition temperature, between the 2D

and 3D dimensional extremes. In each dimensional limit there is already an established

theory and experimental observations to describe the phase transition mechanism. Im-

portantly, we note the transition between these archetypes remains relatively unexplored

and provides a rich area of research for us to explore. To enable this study, we utilise the

formalism provided by the stochastic projected Gross-Pitaevskii equation. Here, we per-

form numerical simulations to sample trajectories of a coherent field coupled directly to a

thermal reservoir, assuming each to be in constant equilibrium with one another. Param-

eter control of the thermal reservoir therefore gives direct and immediate control over the

full system. Averaging over multiple realisations, one may build a parameter-space pic-

ture on the effects of dimensionality and temperature on a particular system. This section

emulates previous theoretical works in the 2D limit, before extending into the third dimen-

sion through a simple modification of the trapping potential. Our experimentally-viable

trapping geometry is accessible to modern experimental groups and thus an experimental

confirmation of our findings remains enticing. We find a monotonic increase in the phase

transition temperature as a system becomes less dimensionally suppressed, continuously

connecting the 2D and 3D phase transition mechanisms.

Lastly, we develop the results of our finite temperature analysis and use them to charac-

terise the nature of the sound and its response to a change in dimensionality. Here, one

would expect a discontinuity of the measured speed across the phase transition within the

3D limit. However, on the opposite side of the spectrum, recent experimental and theoret-

ical research demonstrated that the sound persists across the transition supported by the

existence of quasi-condensation. An interesting question emerges on the behaviour of the

sound propagation through a dimensional crossover as the nature of the phase transition

changes between the dimensional extremes.

Thesis outline

The aim of this thesis is to more deeply understand the effects of vorticity, dimensionality,

phase transitions and critical temperature as it applies to the trapped Bose gas. It is

comprised of two main parts and subdivided into 5 chapters as we will outline here.

5



Contents

I - Zero temperature

The first part of the thesis concerns the zero temperature fully condensed trapped Bose

gas.

1 - Weakly interacting Bose gases

In this chapter we investigate the effects of dimensionality on the behaviour of the ideal

Bose gas and discuss the implications of two-body interatomic interactions. We then

introduce the Gross-Pitaevskii equation before introducing the specific trapping protocol

we employ in the latter parts of this thesis to explore the 2D-3D dimensionality crossover.

We discuss the role of interactions and energy in such a confined system and the definition

of quasi-condensation. Lastly we introduce Bogoliubov theory to describe low-amplitude

excitations on top of the ground state solution and use this to determine the sound speed

of the weakly interacting Bose gas.

2 - Spin-up of a superfluid vortex lattice driven by rough boundaries

In this chapter we investigate the effects of a rough and disordered potential in the rotating

frame, and how this affects the proliferation of vorticity as it enters from the boundary of

an initially quiescent system.

II - Finite temperature

The second part of the thesis concerns the finite temperature trapped Bose gas.

3 - Finite temperature stochastic Gross-Pitaevskii methods

This chapter introduces the theoretical framework for investigating the finite temperature

trapped Bose gas. We introduce the Stochastic Gross-Pitaevskii equation, and discuss the

specific trapping geometry to study, at equilibrium, the dimensional crossover behaviour

of the critical phase transition. We then elaborate on the numerical implementation of

this formalism and the specific choice of the parameters and cutoff protocols we employ

for this theory. Finally, we discuss a method to extract the total density of the system,

including the above-cutoff atoms in our hybridised trapping geometry.

4 - Equilibrium analysis of the dimensionally reduced Bose gas from three

to two dimensions

Within this chapter, we discuss in detail the effects of a dimensional crossover as applied

to the finite temperature Bose gas. We pay specific attention to the monotonic shift in
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numerically extracted phase transition temperature and how this changes between the 2D

and 3D regimes.

5 - Characterisation of sound speed in the weakly interacting Bose gas

across dimensionality

This chapter investigates the propagation of sound as a function of dimensionality and

temperature. Here, we connect the understanding of the behaviour of sound at the di-

mensional extremes with that in the dimensional crossover. We pay particular attention

to the behaviour of the sound at the phase transition temperature.
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Chapter 1

Weakly interacting Bose gases

We begin this chapter by introducing the ideal Bose gas and its response to various trap-

ping potentials, before considering the effects of two-body interactions. We then introduce

the Bogoliubov theory for describing perturbations to the ground state.

1.1 The ideal uniform non-interacting Bose gas

This section focuses on the effects of a number of experimentally-feasible trapping geome-

tries as applied to the non-interacting Bose gas, which allows us to study the phenomenon

of transverse-condensation currently accessible in dimensionally suppressed systems, as

discussed in the latter parts of this thesis (see Part II).

1.1.1 The ideal Bose gas in a 3D box

Let us consider N non-interacting bosons of mass m in a cubic box of side length L. In this

limit, the single-particle Hamiltonian is simply defined by the kinetic energy contribution,

and written as

H(1) =
p2

2m
. (1.1)

Its eigenstates for periodic boundary conditions are plane waves with momentum p, of the

form

ψp(r) = eip·r/!, (1.2)

with energy $p = p2/2m and momentum p = 2π!n/L with n = (nx, ny, nz) ∈ Z3 and

L corresponding to the box size. Assuming that eigenstates are distributed according to

Bose-Einstein statistics, then the mean population of a state ψp in the grand canonical

ensemble is

Np =
1

e(!p−µ)/kBT − 1
, (1.3)
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Chapter 1. Weakly interacting Bose gases

where the thermodynamic variables µ and T are the chemical potential and temperature

respectively. An important property here is that all Np > 0 which implies µ < E0, where

E0 is the energy of the lowest eigenstate. This eigenstate actually has zero energy, hence

we always have µ < 0. The total number of atoms is then simply the sum of these

populations over all possible states, that is

N =
#

p

Np. (1.4)

With this in mind, we can now explicitly separate the lowest fundamental state p = 0,

from the excited states lying above, and write

N = N0 +Nex. (1.5)

Focusing explicitly on these excited states, we can evaluate the sum over these states

and replace our summation in Eq. (1.4) with an integral
$

p → (L/2π!)3
%

dp. This

replacement is only valid if kBT ≫ !2/2mL2. That is, if the energy spacing between

single-particle levels is much less than the thermal energy. We now write the number of

excited bosons as

Nex =
#

p ∕=0

1

e(!p−µ)/kBT − 1
=

&
L

2π!

'3 ( dp

e(!p−µ)/kBT − 1
. (1.6)

For condensation to occur, we require a saturation of the excited states. In order to test

for this, it follows to calculate the density of excited states ρ
(3D)
ex = Nex/L

3, where the

total density is given by

ρ(3D) = ρ
(3D)
0 + ρ(3D)

ex (1.7)

and ρ
(3D)
0 is the density of the lowest mode. In the thermodynamic limit, N → ∞, L → ∞

and so we expect ρ
(3D)
ex to remain constant for saturation to hold. So we now calculate

ρ(3D)
ex =

&
1

2π!

'3 ( dp

e(!p−µ)/kBT − 1
=

&
1

2π!

'3 (
dp

z

ep2/2mkBT − z
, (1.8)

where we have introduced z = eµ/kBT as the fugacity, bounded between 0 and 1. Now we

can Taylor-expand the z-terms, and invert the resultant integral and sum to get

ρ(3D)
ex =

&
1

2π!

'3 ∞#

n=1

zn
(

dp e−np2/2mkBT . (1.9)
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Chapter 1. Weakly interacting Bose gases

This can be analytically solved to give

ρ(3D)
ex =

1

λdB
3Li3/2(z), (1.10)

where we have introduced

Li3/2(z) =
2√
π

( ∞

0
dx

x1/2

z−1ex − 1
(1.11)

This is a specific case of the more general class of polylog or Bose functions of order p

given by

Lip(z) =
1

Γ (p)

( ∞

0
dx

xp−1

z−1ex − 1
=

∞#

l=1

zl

lp
. (1.12)

It is important to highlight here, that Li3/2 saturates at a certain value when the fugacity

goes to 1, specifically Li3/2(1) = 2.612. As such, we can write

ρ(3D) =

)
*

+
λ−3
dB Li3/2(z), if ρ(3D) < sup

,
ρ
(3D)
ex

-

λ−3
dB

,
ρ
(3D)
0 + Li3/2(1)

-
, if ρ(3D) > sup

,
ρ
(3D)
ex

-
,

(1.13)

where we indeed have the saturation of the excited modes, allowing the onset of Bose-

Einstein condensation in a 3D uniform system.

1.1.2 The ideal Bose gas in a 2D box

In 2D, Bose-Einstein condensation of a uniform Bose gas cannot occur. This stems from a

special case of the Mermin-Hohenberg-Wagner theorem [24, 25], which prohibits the exis-

tence of off-diagonal long range order (ODLRO) by the breaking of continuous symmetry

for dimension d < 3. We can observe this by proceeding in a similar manner to the 3D

case presented in Section 1.1, with the substituting integral of the sum now becoming

#

p

→
&

L

2π!

'(
d2p, (1.14)

which we can use to write a reformed version of Eq. (1.9) in the 2D case as

ρ(2D)
ex =

&
1

2π!

'2 ∞#

n=1

(
d2p e

− np2

2mkBT . (1.15)

Again, we may utilise a Bose function to simplify this expression to

ρ(2D)
ex =

1

λ2
dB

Li1(z). (1.16)
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Chapter 1. Weakly interacting Bose gases

On this occasion, the Bose function Li1 is not bounded as the fugacity goes to 1. As

such, there can be no saturation of the excited states and hence the ground state p = 0

cannot become macroscopic. Because of this, we can approximate the density as simply

ρ(2D) ≈ ρ
(2D)
ex and write

ρ(2D) =
1

λ2
dB

Li1(z). (1.17)

Evidently, we see that Bose-Einstein condensation of the ideal uniform Bose gas cannot

survive a reduction in dimensionality. This raises the pertinent question, at what point

does dimensionality inhibit the condensation of the Bose gas? In other words, if we consider

a box and proceed to suppress its dimensionality along a singular direction, at what point

do we consider the Bose gas contained within it to be 2D and condensation precluded?

This is one of the central questions we try to address in this thesis and is discussed at length

in Chapter 4, where we perform a dimensional analysis across temperature to determine

the critical transition behaviour across dimensionality.

1.1.3 The ideal Bose gas in a rectangular box with transverse confine-

ment

In order to focus on the dimensional crossover of the Bose gas, we now consider the par-

ticular trapping of a rectangular box of size Lx, Ly with transverse harmonic potential of

strength ωz. This is precisely the setup utilised for a number of experiments and theoretical

studies considering the quasi-2D Bose gas [5, 26–28]. For a particle in such confinement,

the stationary solutions to the Schrödinger equation yield the energy spectrum as

Enx,ny ,nz =
π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
+

&
nz +

1

2

'
!ωz, (1.18)

where nx, ny, nz are positive integers denoting the energy level in that direction. Now

consider an ideal gas of bosons in such confinement and suppose that the average number

of particles occupying the state of energy E is given by the Bose-Einstein distribution of

Eq. (1.3). We can arbitrarily shift the zero of the energy in such a way that the lowest

state has zero energy (i.e., removing the zero-point energy, which would be the ground

state energy for a single particle). Let us write

E = En =
π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
+ nz!ωz (1.19)
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Chapter 1. Weakly interacting Bose gases

and introduce the quantity ζ = Lx/Ly. We can then write the quantity En/kBT as it

appears in the Bose-Einstein distribution as

En

kBT
=

π2!2

2mkBTL2
x

0
n2
x + ζ2n2

y

1
+ nz

!ωz

kBT
. (1.20)

Utilising the thermal de Broglie wavelength λdB and the transverse harmonic oscillator

length defined by

ℓz =

2
!

mωz
, (1.21)

we can express Eq. (1.20) as

En

kBT
=

π

4

λ2
dB

L2
x

0
n2
x + ζ2n2

y

1
+

1

2π

λ2
dB

ℓ2z
nz. (1.22)

In currently accessible experimental geometries, the aspect ratio ζ is a number of or-

der unity. This means that the thermodynamics of the gas is determined by the three

length scales Lx, ℓz and λdB only through the two ratios λdB/Lx and λdB/ℓz. We as-

sume λdB/Lx ≪ 1 in such a way that the states in the planar box can be considered as

a continuum, and sums over nx and ny can be replaced by integrals. Instead, the ratio

λdB/ℓz determines the dimensionality of the system. For values λdB/ℓz ≪ 1, the system is

three-dimensional (the transverse modes also behave as a continuum), while if λdB/ℓz ≫ 1

the system is two-dimensional (the transverse profile is Gaussian and only planar modes

with nz = 0 contribute to thermodynamics). It is worth stressing that we are considering

an ideal gas of noninteracting particles. In an interacting system, one should also include

another length scale (or, equivalently, an energy scale) associated with interaction, which

can change the way in which the system transitions from 2D to 3D. For N particles at a

given temperature T , the chemical potential µ is fixed by the condition

N =
#

n

1

exp [(En − µ) /kBT ]− 1
. (1.23)

We can separate the sum in this way

N =
∞#

nz=0

∞#

nx,ny=1

1

exp [(En − µ) /kBT ]− 1
(1.24)

and replace the second sum over the plane with an integral

N =

∞#

nz=0

( ∞

0
dE

g(E)

exp [(E + nz!ωz − µ) /kBT ]− 1
, (1.25)
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Chapter 1. Weakly interacting Bose gases

where E is the contribution to the energy due to planar states only and g(E) is the

corresponding density of states in the plane, as determined in Appendix A.6. We can then

write

N =
mLxLy

2π!2
∞#

nz=0

( ∞

0
dE

1

exp [(E + nz!ωz − µ) /kBT ]− 1
. (1.26)

For compactness of notation let us introduce

t =
E

kBT
(1.27)

and

z (nz) = e(µ−nz!ωz)/kBT . (1.28)

This allows us to express

N =
mkBTL

2
x

2π!2ζ

∞#

nz=0

( ∞

0
dt

1
et

z(nz)
− 1

, (1.29)

or more simply

N =
1

ζ

L2
x

λ2
dB

∞#

nz=0

( ∞

0
dt

1
et

z(nz)
− 1

. (1.30)

This integral is a standard Bose-Einstein integral of order 1. We note the Bose-Einstein

integral of order s is given by

( ∞

0
dt

ts−1

et

z − 1
= Γ (s)Lis(z) (1.31)

where Γ is the Gamma Euler function. For s = 1 one has

Li1(z) = − ln(1− z) (1.32)

and Γ (1) = 1, so that

N = −1

ζ

L2
x

λ2
dB

∞#

nz=0

ln
,
1− e(µ−nz!ωz)/kBT

-
(1.33)

or instead

N = −1

ζ

L2
x

λ2
dB

∞#

nz=0

ln
,
1− eµ/kBT e−nzλ2

dB/2πℓ
2
z

-
. (1.34)

We note that L2
x/ζ = LxLy is the area of the planar box and ζN/L2

x is the number of atoms

per unit area, i.e., the two-dimensional density n2D. We can also define the phase-space
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Chapter 1. Weakly interacting Bose gases

density D = λ2
dBn2D and write this expression as

D = −
∞#

nz=0

ln
,
1− eµ/kBT e−nzλ2

dB/2πℓ
2
z

-
. (1.35)

This can be seen as the sum of two-dimensional phase-space densities, each one associated

to a different value of nz (i.e., to planar states with 0, 1, 2, ..., nodes in the transverse

wave function). This result is the same as is reported in [29]. Assuming a fixed fugacity,

we can interchange the sum with an integral and write

D ≃ −
( ∞

0
ln

,
1− ze−nzλ2

dB/2πℓ
2
z

-
dnz =

2πℓ2z
λ2
dB

Li2(z). (1.36)

Now, in the limit z → 1, we converge to the critical phase space density

Dc =
π3ℓz

2

3λ2
dB

. (1.37)

And so we can write the total phase space density as D = D0 +Dex where

D0 = ln
,
1− eµ/kBT

-
(1.38)

is the phase space density of lowest transverse occupation and

Dex =
#

nz≥1

ln
,
1− eµ/kBT e−nzλ2

dB/2πℓ
2
z

-
(1.39)

corresponds to the higher transverse modes. We can hence consider

Dex ≃

)
*

+

2πℓ2z
λ2
dB

Li2(z) and D0 = 0 if D < Dc,

Dc and z = 1 if D > Dc.
(1.40)

Thus, we observe macroscopic occupation of the lowest transverse state when D > Dc, even

if ℓz is considerably large. This phenomenon is known as transverse condensation [5, 30, 31]

as was first predicted by van Druten and Ketterle and shows that even if the dynamics are

not completely frozen across the transverse direction, macroscopic occupation is realised.

This becomes crucial as we explore the dimensional crossover of the dilute Bose gas under

this specific confinement, as we will in Chapter 4.
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Chapter 1. Weakly interacting Bose gases

1.2 The Gross-Pitaevskii equation

1.2.1 The role of interactions in a dilute Bose gas

The theory of the dilute Bose gas was first developed by Landau in 1941 [32], in order to

explain the extraordinary behaviour of helium-4. However, this theory is a closer match

to dilute atomic BEC’s, due to their comparably weaker interactions. More recently, the

unique ability to tune the interaction strength in a Bose gas is an invaluable weapon in the

physicists’ arsenal. Using a Feshbach resonance, experimentalists are able to precisely tune

the inter-atomic interaction strength between atoms giving unprecedented control. Up

until now, we have considered the non-interacting Bose gas, we proceed now by considering

the case of the weakly interacting Bose gas. That is to say, in the case where interactions

are strictly limited to binary collisions between two atoms. For a dilute weakly interacting

Bose gas, we can write the Hamiltonian for N interacting atoms as

Ĥ =

N#

k=1

ĥ0(rk) +
1

2

N#

k,l=1

V̂ (rk, rl) (1.41)

where

ĥ0 = −!2∇2/2m+ Vpot(r) (1.42)

is the operator on a free particle in some confining potential Vpot and the second term

symmetrically considers the effect of binary inter-atomic collisions. It becomes convenient

for what follows to move from ‘co-ordinate representation’ to ‘occupation number repre-

sentation’, known as second quantisation [33]. In the formalism of second quantisation,

we introduce the bosonic field operators

Ψ̂ =
#

i

âi(t)ψi(r, t),

Ψ̂ † =
#

i

â†i (t)ψ
∗
i (r, t),

(1.43)

which are summed over the complete orthonormal set of single-particle quantum numbers.

Here, âi and â† represent the standard single-particle annihilation and creation operators

that destroy or create a particle in state i. Since the bosonic field operators are linear

combinations of these operators, we can consider Ψ̂ (Ψ̂†) to represent the annihilation

(creation) of a particle at position r and time t. In the case of bosons, these field operators

obey the following commutation relations

[Ψ̂(r, t), Ψ̂ †(r′, t)] = δ(r− r′),

[Ψ̂ †(r, t), Ψ̂ †(r′, t)] = [Ψ̂(r, t), Ψ̂(r′, t)] = 0.
(1.44)
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Chapter 1. Weakly interacting Bose gases

Using these operators, we are able to transfer into the occupation number representation

and write our system Hamiltonian as

Ĥ =

(
dr Ψ̂†(r, t)ĥ0(r)Ψ̂(r, t)+

1

2

((
drdr′ Ψ̂ †(r, t)Ψ̂ †(r′, t)V (r−r′)Ψ̂(r, t)Ψ̂(r′, t). (1.45)

All current theoretical treatments of the dilute Bose gas effectively begin from this, or

an equivalent expression. Such a Hamiltonian contains both thermal and quantum fluc-

tuations. A detailed review of the many directions one could take can be found within [34].

From here on, it becomes important to consider the effect of collisions. The atoms

within a low temperature dilute Bose gas are sufficiently spatially separated to be out of

the typical range of the interatomic potential. As such, we can consider all interatomic

interactions to be scattering processes, where at sufficiently low energies the scattering

amplitude f3D(k) tends to a constant, and only so-called s-wave scattering is accessible.

The standard approach [35] is to approximate the contact interaction via the expression

V (r− r′) = g3Dδ(r− r′), (1.46)

where the strength of a scattering process is approximated by g3D = 4π!2as/m with

as defining the s-wave scattering length for the particular atomic species in question.

Incidentally, this treatment doesn’t hold in 2D systems, since the scattering amplitude

retains a dependence on k at small wave vectors. However, in the limit of a quasi-2D

regime, the scattering amplitude can be approximated by a constant. This allows us to

rewrite our system Hamiltonian as

Ĥ =

(
dr Ψ̂†(r, t)ĥ0(r)Ψ̂(r, t) +

g

2

((
drdr′ Ψ̂ †(r, t)Ψ̂ †(r′, t)Ψ̂(r, t)Ψ̂(r′, t) (1.47)

leading to, in the Heisenberg picture, the equation of motion

i!
∂Ψ̂(r, t)

∂t
= ĥ0Ψ̂(r, t) + gΨ̂ †(r, t)Ψ̂(r, t)Ψ̂(r, t) (1.48)

which contains essentially all the information we may need about the dynamics of our

system. The phenomenon of Bose-Einstein condensation stipulates that we have macro-

scopic occupation of the same quantum state for the bosons in our system. Hence, it is

convenient to separate our Bose field operator into an operator for the condensate part

and one for the fluctuation part via

Ψ̂(r, t) = â0(t)ψ0(r, t) +
#

i ∕=0

âi(t)ψi(r, t) (1.49)
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For notational brevity, we can simplify this expression to read

Ψ̂(r, t) = φ̂0(r, t) + δ̂(r, t) (1.50)

by introducing the terms ψ̂(r, t) and δ̂(r, t) for the condensate and fluctuation operator

respectively. This split is essentially equivalent to the one incurred in Eq. (1.5) where we

separated the lowest momentum mode from any excited modes. The number of atoms in

our condensate can be given by the operator N̂0 = â†0â0, where acting on our state with

this operator returns the eigenvalue N0. Now, if we calculate

[â0â
†
0, â

†
0â0]

N0
|N0〉 =

1

N0
|N0〉 (1.51)

in the limit of N0 ≫ 1, i.e. a macroscopically occupied state, then 1/N0 → 0 and we can

consider the single-particle operators to be commutative. This leads us to make what is

known as the Bogoliubov approximation where we replace the condensate operator by the

complex classical field

ψ(r, t) =
!
n0(r, t)e

iS(r,t), (1.52)

typically referred to as the condensate wavefunction. We note that the explicit definition

of the phase for this order parameter is analogous to the spontaneous breaking of U(1)

symmetry [36, 37]. Hence, we can approximate our bosonic field operator with Ψ̂(r, t) =

ψ(r, t) + δ̂(r, t), thereby moving all operator dependence to the fluctuation term. To

proceed, we can now substitute Eq. (1.50) into Eq. (1.47). In doing so, we acquire a result

that has terms up to a quadratic in operators, which we separate into

Ĥ = H0 + Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 (1.53)

with

H0 =

(
dr

3
ψ∗ĥ0ψ +

g

2
|ψ|4

4
,

Ĥ1 =

(
dr

3
δ̂†(ĥ0 + g|ψ|2)ψ + ψ∗(ĥ0 + g|ψ|2δ̂

4
,

Ĥ2 =

(
dr

3
δ̂†(ĥ0 + 2g|ψ|2)δ̂ + g

2
((ψ∗)2δ̂δ̂ + ψ2δ̂†δ̂†)

4
,

Ĥ3 = g

(
dr

3
ψδ̂†δ̂†δ̂ + ψ∗δ̂†δ̂δ̂

4
,

Ĥ4 =
g

2

(
dr

3
δ̂†δ̂†δ̂δ̂

4
.

(1.54)

Ignoring quantum and thermal fluctuations entirely by dropping δ̂ terms, our Hamiltonian
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becomes

H =

(
dr

&
− !2

2m
|∇ψ(r, t)|2 + Vtr(r, t)|ψ(r, t)|2 +

g

2
|ψ(r, t)|4

'
, (1.55)

which in the Heisenberg picture, gives our equation of motion to be

i!
∂ψ(r, t)

∂t
=

&
−!2∇2

2m
+ Vpot(r, t) + g|ψ|2

'
ψ, (1.56)

the renowned time-dependent Gross-Pitaevskii equation (GPE) [38, 39]. We note here

that our Energy functional described by Eq. (1.55) is time dependent, however, in the

case of a static potential, time-independent solutions to this equation may exist. These

take the form

ψ(r, t) = ψ0(r)e
−iµt/! (1.57)

where µ is a constant known as the chemical potential and ψ0(r) minimises the expectation

of Eq. (1.55), under the condition that

(
dr|ψ(r)|2 = N. (1.58)

Thus, the chemical potential is commonly written as µ = ∂E/∂N . Using the substitution

in Eq. (1.57) allows us to rephrase Eq. (1.56) as

µψ0 =

&
−!2∇2

2m
+ Vpot(r) + g|ψ0)|2

'
ψ0 (1.59)

which is the time-independent GPE equation. Whilst this model describes a weakly in-

teracting Bose gas, it is idealised when applied to superfluid helium. We can also find

solutions in the moving frame in which the fluid moves at velocity v. We can then rewrite

Eq. (1.52) as

ψ′(r, t) =
√
n0e

iS′(r,t) (1.60)

with the modified phase [40]

S′(r, t) =
1

!

5
mvr−

&
1

2
mv2 + µ

'
t

6
. (1.61)

This allows us to define the superfluid velocity of the fluid as

vs =
!
m
∇S. (1.62)
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We may now go on to introduce the superfluid vorticity

ω = ∇× vs =
!
m
∇×∇S = 0. (1.63)

In this instance, we are taking the curl of a gradient which is exactly zero. Thus, in

the uniform superfluid with a smoothly varying phase, we have an entirely irrotational

flow. However, since superfluids may sustain topological defects characterised by 2π phase

singularities, we instead have localised point-like contributions to the system vorticity. Let

us consider a change in the phase along some closed contour C and write

δS =

7

C
∇S · dl, (1.64)

where l is the line element along C. The superfluid velocity can be written as the gradient

of a scalar function and so doesn’t depend upon the path around a closed curve. Therefore

the wavefunction at the start and end of C must be single-valued and thus exp(iδS)

corresponds to a full rotation around the Argand plane. Hence, δS = 2πq, for q ∈ Z. We

can also take the line integral around around a closed contour C for the local superfluid

velocity as given by Eq. (1.62) and write the circulation

Γ =

7

C
vs · dl =

2π!q
m

. (1.65)

We note here that the circulation takes integer values, quantised into units of κ = 2π!/m,

suggesting a quantised nature to the vorticity within superfluid systems.

1.3 The weakly interacting Bose gas in a rectangular box

under transverse harmonic confinement

Now we refocus on the problem of the weakly interacting Bose gas in hybridised potential

as introduced in Section 1.1.3. For clarity, we consider the gas to be confined by a potential

of the form

V
(3D)
tot (r, t) = V

(2D)
box (x, y, t) + V

(1D)
harm(z) (1.66)

where the in-plane confinement is prescribed by, for example, a hard-walled box of extent

Lx×Ly. The harmonic confinement term then provides tight trapping along the transverse

direction of strength ωz, restricting dynamics to within the plane. The Hamiltonian of

our system may then be specified by

H =

(
dr

&
− !2

2m
|∇ψ(r, t)|2 + V

(3D)
tot (r, t)|ψ(r, t)|2 + g

2
|ψ(r, t)|4

'
. (1.67)
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In the limit of strong trapping we make the ansatz that dynamics are limited to the plane

and frozen across the transverse dimension. This remains valid assuming that the thermal

and interaction energies are small compared to the difference of energy between the ground

state and the first excited transverse mode. As such we make the ansatz

ψ(r, t) = ψ(x, y, t)φ(z), (1.68)

where φ(z) is the ground state solution for z known to be of the form

φ(z) =
e
− z2

2ℓ2z

(πℓ2z)
1/4

(1.69)

and ℓz is the transverse lengthscale as defined by Eq. (1.21). Following this, we can rewrite

Eq. (1.67) as

H =

(
dr

&
− !2

2m
|∇ψ(r, t)|2 + V

(2D)
box (x, y, t)|ψ(r, t)|2 + g2D

2
|ψ(r, t)|4

'
, (1.70)

where we have omitted an additive constant that arises and have introduced

g2D = g

( ∞

∞
|φ(z)|4dz. (1.71)

We now consider the effects of additional excited transverse modes. That is, what can be

said about the interactions in the case of quasi-2D trapping. In fact, we need to consider

the different regimes of 2D and quasi-2D and how interactions change as we follow the

transition. To be rigorous concerning the boundaries between dimensionality, from hereon

we consider:

• 2D to be the regime in which all dynamics in the transverse direction are effectively

frozen. This is when kBT ≪ !ωz. Of course, this is different from a purely 2D

system, where the third coordinate is non-existent.

• Quasi-2D to be the regime corresponding to kBT ≈ !ωz in which there is significant

occupation of atoms in the excited modes of the transverse dimension.

Whilst the reduced dimensionality interaction strength comes easily in the former case,

more care is needed in the latter. In the second regime we can again approximate the

contact interaction to be a scattering process as in Eq. (1.46) of the form

V
0
r− r′

1
= g2Dδ2D

0
r− r′

1
(1.72)
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with the interaction strength given by

g2D =

√
8π!2

m

1

ℓz/as − ln (πq2ℓ2z) /
√
2π

, where q2 =
2mµ

!2
(1.73)

as derived by Petrov et al [41]. In fact, for most experimentally accessible parameters

[42–45], ranging from a dimensionless coupling strength of 0.01 to 3, the logarithmic term

becomes negligible and we are simply left with

g2D =

√
8π!2

m

1

ℓz/as
=

!2
√
8πas

mℓz
. (1.74)

This then yields the interaction energy

Eint =
!2
√
8πas

2mℓz

( 8
n2(r)

9
d2r. (1.75)

1.3.1 Interactions at low temperature

Another way to attain the result of Eq. (1.75) is by defining the strongly interacting limit

at which the interaction energy of N bosons, Eint, matches the kinetic energy Ekin of N

non-interacting bosons equally distributed over the lowest N single-particle states. We do

this for the case of in-planar box confinement in tandem with transverse harmonic trapping

as specified by Eq. (1.66). Neglecting density fluctuations, we can assume n(r) ≈ n, and

write the 3D interaction energy as

Eint =
g3D
2

( Lx
2

−Lx
2

( Ly
2

−Ly
2

( ∞

−∞
n2(x, y)

.
1

(πℓ2z)
1
4

e
− z2

2ℓ2z

/2

dz dy dx =
g3Dn

2LxLy

2
(1.76)

where we have assumed the density profile in the transverse direction to take a Gaussian

form, which is valid under the condition as ≪ ℓz. We now introduce the dimensionless

interaction parameter as

g̃3D =
m

!2
g3D. (1.77)

Using this, we can express the interaction energy as

Eint =
!2g̃3DNn

2m
. (1.78)

Now, using the density of states as derived in Eq. (A.6), the energy of the N th excited

single-particle state is calculated as

EN =
nLxLy

g(E)

( ∞

−∞

1!
πℓ2z

e
− z2

ℓ2z dz =
2nπ!3ωz

mE
. (1.79)
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Therefore, the kinetic energy follows as

Ekin =
Nnπ!3ωz

mE
. (1.80)

So, in the strongly interacting limit, we recover the relation

g̃3D =
2π!ωz

E
. (1.81)

We see that the importance of interactions can be characterised by the energy scale E/!ωz.

Further, in the limit of pure 2D at which we consider the transverse and total energy to

be comparable, we recover the result published in [46]. That is,

lim
!ωz→E

g̃3D = 2π. (1.82)

1.4 Quasi-condensation

Having derived the interaction energy, we can also consider the mean-field interaction

energy per particle. At lower temperatures, this term dominates over the thermal energy

and we can show
Eint

NkBT
=

!2g̃3Dn
2mkBT

=

√
8πas/ℓz
4π

D ≫ 1. (1.83)

Or conversely

D ≫
√
2πℓz
as

, (1.84)

revealing that for sufficiently low temperatures, density fluctuations are suppressed. In

fact, it is already known that density fluctuations are suppressed for D ≫ 1 [47–49] and is

described here as the manifestation of a quasi-condensate. What is specifically meant by

this term is that although density fluctuations are minimised, there is not an associated

phase coherence as in the case of true condensation. The concept of quasi-condensation

was first discussed by Popov [50] and later developed by Petrov et al [41].

1.5 Bogoliubov theory

By looking for time-dependent solutions of the GPE, we can recover information about

collective excitations for our system. This is performed by considering some fluctuation

δφ(r, t) about the ground state of the system φ0(r) via the expression

φ(r, t) = e−iµt/! [φ0(r) + δφ(r, t)] . (1.85)
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Then, by substituting this into the time-dependent GPE and subtracting the time-independent

GPE we recover a time-dependent equation governing the evolution of fluctuations about

the ground state. Considering small amplitude fluctuations, we can linearise to first order

in δφ(r, t) to get

i!
∂

∂t
δφ(r, t) =

3
ĥ0 + 2g |φ0|2 − µ

4
δφ(r, t) + gφ2

0δφ
∗(r, t). (1.86)

Now, it’s possible to look for solutions in the plane-wave basis of the form

δφ(r, t) =
#:

ui(r)e
−iωit + v∗i (r)e

iωit
;
, (1.87)

where ωi label the frequency of the i-th mode. Substituting Eq. (1.87) and its complex

conjugate into Eq. (1.86), it is possible to recover the coupled Bogoliubov equations. When

written in matrix form, these are expressed as

.
L̂(r) M̂(r)

−M̂∗(r) −L̂∗(r)

/.
ui(r)

vi(r)

/
= $i

.
ui(r)

vi(r)

/
, (1.88)

where the operators

L̂ = ĥ0 + 2g |φ0(r)|2 − µ

M̂(r) = g [φ0(r)]
2 (1.89)

have been introduced. We have also defined $i as the dressed energy of mode i. Another

way to derive the Bogoliubov equations is by diagonalising the Hamiltonian. Let us

begin by truncating our full system Hamiltonian down to one that is quadratic (Ĥ ≈
H0 + Ĥ1 + Ĥ2) in fluctuations. In the grand-canonical ensemble, where particles and

energy are non-conserved we can replace Ĥ by K̂ = Ĥ − µN̂ where N̂ =
%
dr Ψ̂ †Ψ̂ is the

number operator. Now, considering a time-dependent wavefunction as before and writing

Ψ̂(r, t) = φ0(r) + δ̂(r, t)) we can write

K̂ =

(
dr

3
(φ∗

0 + δ̂†)ĥ0(φo + δ̂)
4

+
g

2

(
dr

3
(φ∗

0 + δ̂†)(φ∗
0 + δ̂†)(φ0 + δ̂)(φ0 + δ̂)

4

− µ

(
dr

3
(φ∗

0 + δ̂†)(φ+ δ̂)
4
.

(1.90)
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This can be separated by its order in terms of fluctuation operators into

K0 =

(
dr

3
φ∗
0(ĥ0 − µ)φ0 +

g

2
|ψ0|4

4

K̂1 =

(
dr

3
δ̂†(ĥ0 + g|φ0|2 − µ)φ0 + φ∗

0(ĥ0 + g|φ0|2 − µ)δ̂
4

K̂2 =

(
dr

3
δ̂†(ĥ0 + 2g|φ0|2 − µ)δ̂ +

g

2

,
(φ∗

0)
2δ̂δ̂ + φ2

0δ̂
†δ̂†

-4
.

(1.91)

Considering each term separately we can in fact see that minimisation of K0 for a constant

chemical potential is entirely equivalent to the minimisation of the energy functional of

Eq. (1.55) which leads to the derivation of the stationary GPE. Such a minimisation

assumes that there exists a unique minimum where the condensate chooses a random

coherent phase, consistent with our assumption of symmetry breaking. Now, substituting

the GPE of Eq. (1.56) into the expression for K̂1 leads to the simple result K̂1 = 0.

However, it is in fact possible to diagonalise the K̂2 term by utilising the Bogoluliubov

transformation relations

δ̂(r, t) =
#

i

3
ui(r)β̂i(t) + v∗i (r)β̂

†
i (t)

4
, and δ̂†(r, t) =

#

i

3
u∗i (r)β̂

†
i (t) + vi(r)β̂i(t)

4
.

(1.92)

Here, we have introduced β̂† (β̂) as the creation (annihilation) operators for quasiparticles

which obey the Bose commutation relations

[β̂i, β̂
†] = δij

[β̂i, β̂j ] = 0.
(1.93)

Expressing the non-condensate operators in terms of quasiparticles via Eq. (1.92) is analo-

gous to the expansion around the condensate mean field. From the commutation relations,

one may also derive orthonormality relations for the non-condensate operators given by

%
dr [u∗i (r)uj(r)− v∗i (r)vj(r)] = δij%
dr [ui(r)vj(r)− vi(r)uj(r)] = 0

. (1.94)

To simplify the following steps we now split the second-order contribution K̂2 into two

parts

K̂1
2 =

(
dr

3
δ̂†(ĥ0 + 2g|φ0|2 − µ)δ̂

4
(1.95)

and

K̂2
2 =

(
dr

3g
2

,
(φ∗

0)
2δ̂δ̂ + φ2

0δ̂
†δ̂†

-4
, (1.96)
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considering each separately. Substituting the Bogoliubov transformation relations Eq. (1.92)

into Eq. (1.95) we get

K̂1
2 =

(
dr

#

i

,
u∗i β̂

†
i + viβ̂i

-<
ĥ0 + 2g|φ0|2 − µ

=#

j

,
uj β̂j + v∗j β̂

†
j

-

=

(
dr

#

i

<
u∗i β̂

†
i ĥ0uj β̂j + u∗i β̂

†
i ĥ0v

∗
j β̂

†
j + u∗i β̂

†
i 2g|φ0|2uj β̂j + u∗i β̂

†
i 2g|φ0|2v∗j β̂

†
j

− u∗i β̂
†
iµuj β̂j − u∗i β̂

†
iµv

∗
j β̂

†
j + viβ̂iĥ0uj β̂j + viβ̂iĥ0v

∗
j β̂

†
j

+ viβ̂i2g|φ0|2uj β̂j + viβ̂i2g|φ0|2v∗j β̂
†
j − viβ̂iµuj β̂j − viβ̂iµv

∗
j β̂

†
j

=

(1.97)

which simplifies to

K̂1
2 =

(
dr

#

ij

>3
u∗i ĥ0uj + u∗i 2g|φ0|2uj − u∗iµuj

4
β̂†
i β̂j

+
3
viĥ0v

∗
j + vi2g|φ0|2v∗j − viµv

∗
j

4
β̂iβ̂

†
j

+
3
u∗i ĥ0v

∗
j + u∗i 2g|φ0|2v∗j − u∗iµv

∗
j

4
β̂†
i β̂

†
j

+
3
viĥ0uj + vi2g|φ0|2uj − viµuj

4
β̂iβ̂j

?
.

(1.98)

Specifically considering the second contribution Eq. (1.96) we get

K̂2
2 =

g

2

(
dr

#

ij

<
(φ∗

0)
2
#

ij

(uiβ̂i + v∗i β̂
†
i )(uj β̂j + v∗j β̂

†
j ) + (φ0)

2
#

ij

(u∗i β̂
†
i + viβ̂i)(u

∗
j β̂

†
j + vj β̂j)

=

=
g

2

(
dr

#

ij

<
(φ∗

0)
2uiβ̂iuj β̂j + (φ∗

0)
2v∗i β̂

†
i v

∗
j β̂

†
j + (φ∗

0)
2uiβ̂iv

∗
j β̂

†
j + (φ∗

0)
2v∗i β̂

†
i uj β̂j

+ φ2
0u

∗
i β̂

†
i u

∗
j β̂

†
j + φ2

0viβ̂ivj β̂j + φ2
0u

∗
i β̂

†
i vj β̂j + φ2

0viβ̂iu
∗
j β̂

†
j

=
,

(1.99)

which is just

K̂2
2 =

g

2

(
dr

#

ij

>3
(φ∗

0)
2uiuj + φ2

0vivj

4
β̂iβ̂j

+
3
(φ∗

0)
2v∗i v

∗
j + φ2

0u
∗
iu

∗
j

4
β̂†
i β̂

†
j

+
3
(φ∗

0)
2uiv

∗
j + φ2

0viu
∗
j

4
β̂iβ̂

†
j

+
3
(φ∗

0)
2v∗i uj + φ2

0u
∗
i vj

4
β̂†
i β̂j

?
.

(1.100)
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To simplify and recombine our constituent expressions we introduce the operator L̂ =

ĥ0 + 2g|φo|2 − µ. We can then write our expression for K̂2 = K̂1
2 + K̂2

2 as

K̂2 =

(
dr

#

ij

>3
u∗i L̂uj +

g

2

0
(φ∗

0)
2v∗i uj + φ2

0u
∗
i vj

14
β̂†
i β̂j

+
3
viL̂v∗j +

g

2

0
(φ∗

0)
2uiv

∗
j + φ2

0viu
∗
j

14
β̂iβ̂

†
j

+
3
u∗i L̂v∗j +

g

2

0
(φ∗

0)
2v∗i v

∗
j + φ2

0u
∗
iu

∗
j

14
β̂†
i β̂

†
j

+
3
viL̂uj +

g

2

0
(φ∗

0)
2uiuj + φ2

0vivj
14
β̂iβ̂j .

?
.

(1.101)

Denoting the Hermitian Conjugate as (H.C.), this can be simplified further down to

K̂2 =
1

2

(
dr

#

ij

>3
u∗i L̂uj + viL̂v∗j + g(φ0)

2u∗i vj + gφ2
0viu

∗
j

4
β̂†
i β̂j + [H.C.]

+
3
viL̂uj + viL̂uj + g(φ∗

0)
2uiuj + gφ2

0vivj

4
β̂iβ̂j +H.C.

?
.

(1.102)

Now, if uj & vj satisfy the coupled Bogoliubov equations and φ, $ ∈ R we have

L̂uj + gφ2
0vj = $juj

L̂vj + gφ2
0uj = −$jvj .

(1.103)

Utilising conjugation techniques of variables we can obtain the following expressions

u∗i L̂uj + gφ2
0u

∗
i vj = u∗i $juj

viL̂v∗j + g(φ∗
0)

2viu
∗
j = −vi$jv

∗
j

viL̂uj + gφ2
0vivj = vi$juj

vjL̂ui + gφ2
0ujui = −vj$

∗
jui.

(1.104)

These allow us to simplify our expression of K̂2 into

K̂2 =
1

2

(
dr

#

ij

>3
$j
0
u∗iuj − viv

∗
j

14
β̂†
i β̂j + [H.C.]β̂iβ̂

†
j

+
3
$j
0
viuj − vjui

14
β̂iβ̂j +H.C.

?
.

(1.105)
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Using the orthonormality relations of Eq. (1.94), the third term and its hermitian conjugate

vanish. So now we can write

K̂2 =
1

2

(
dr

#

ij

>
($j + $i)

0
u∗iuj β̂

†
i β̂j − viv

∗
j β̂iβ̂

†
j

1
?
. (1.106)

Using the bosonic commutation relations, we get β̂iβ̂
†
j = β̂†

j β̂i + δij and so we can write

K̂2 =
1

2

(
dr

#

ij

>
($j + $i)

,
u∗iuj β̂

†
i β̂j − viv

∗
j (β̂

†
j β̂i + δij)

-?
. (1.107)

This simplifies to

K̂2 =
1

2

(
dr

#

ij

>
($j + $i)

,
u∗iuj − vjv

∗
i )
-
β̂†
i β̂j − ($j + $i)viv

∗
j δij

?
. (1.108)

Once again utilising the orthonormality relations of Eq. (1.94), this becomes

K̂2 =
1

2

#

ij

>
($j + $i)δij β̂

†
i β̂j

?
− 1

2

(
dr

#

ij

>
($j + $i)δijviv

∗
j δij

?
, (1.109)

which is simply

K̂2 =
1

2

#

i

>
2$iβ̂

†
i β̂i

?
− 1

2

(
dr

#

i

>
2$iviv

∗
i

?
. (1.110)

So finally we arrive at

K̂2 =
#

i

$iβ̂
†
i β̂i −

#

i

$i

(
dr |vi|2. (1.111)

Typically the second contribution is negligible (assuming quantum depletion) and so we

are simply left with a system of non-interacting quasiparticles with an energy spectrum

obtained from Eq. (1.88).

1.6 Sound speed of the weakly interacting Bose gas

At zero temperature, we can safely assume the system state is completely described by the

order parameter φ0. In a uniform system, we can omit the trapping potential by setting

Vpot = 0 and make the substitution n0 = |φ0|2, as well as µ = gn0. This allows us to

express Eq. (1.88) as

@

A

,
−h2k2

2m + gn0 − $i

-
gn2

0

gn2
0

,
−h2k2

2m + gn0 + $i

-

B

C
D

ui

vi

E
= 0. (1.112)
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By imposing that determinant is zero-valued, this equation can be easily solved to give

the excitation spectrum

$i =

"
h2k2

2m

&
h2k2

2m
+ 2gn

'
. (1.113)

We highlight that although this treatment seems futile in 2D since thermal fluctuations

destroy the order parameter, the long-wavelength fluctuations only extinguish coherence

at long distance. As such, the system still exhibits off-diagonal long range order. In fact

the applicability of this treatment for quasi-condensates is discussed at length and justified

in [48, 51, 52]. The long wavelength excitations are phonon modes

lim
k→0

$i =

2
gn

m
k = cBk, (1.114)

where we have introduced the Bogoliubov phonon mode velocity

cB =

2
gn

m
, (1.115)

corresponding to the Goldstone mode of the weakly interacting Bose gas. This arises from

the spontaneous breaking of U(1) symmetry. In contrast, for small-wavelength modes, the

excitation spectrum is described by a single-particle kinetic energy term such that

lim
k→∞

$i =
h2k2

2m
. (1.116)

1.7 Chapter summary

In this chapter we introduced some of the theoretical tools and concepts relevant through-

out this thesis. We considered the effects of dimensionality on the ideal Bose gas, bearing

interesting insights into the effects of system dimensionality on the prospect of BEC. We

then considered the effects of inter-atomic interaction, motivating the fundamental con-

cepts behind the Gross-Pitaevskii equation. Following this, we discussed the quantised

nature of vortices within superfluid systems, which will be of paramount importance in

the following chapter. We then introduced a trapping potential capable of facilitating the

study of a dimensional crossover from 2D to 3D and explored arguments concerning the

energy scales of such a system. This motivated the definition of quasi-condensation, which

will become important in the later parts of this thesis where quasi-condensation is thought

to manifest the continuity of sound across the 2D phase transition. Finally we investigated

Bogoliubov theory, revealing the phonon-like behaviour of first-order long-wavelength per-

turbations. This will become important in the final chapter of this thesis, where we probe

the response in sound speed across temperature and through a dimensionality crossover.
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Chapter 2

Spin-up of a superfluid vortex

lattice driven by rough boundaries

The contents that follow in this chapter were published in Keepfer et al [53]. This chapter

focuses on the proliferation of quantised vortex filaments generated from a rotating rough

potential barrier, starting from an initially quiescent fluid. Here, we see the importance

of vortex interactions and reconnections as we recover the simple vortex lattice solution

for a superfluid under rotation.

2.1 Introduction to superfluidity

Superfluids are extraordinary fluids characterised by the absence of viscosity. They are

irrotational everywhere except at vortex lines whose circulation is quantised in units of

κ = h/m, where h is Planck’s constant and m is the mass of the boson which composes

the fluid [40, 54]. First discovered and studied in liquid helium-4 and, decades later, in

helium-3, superfluidity has since been observed in ultracold gases and photonic systems.

The constraint of quantised vorticity is a consequence of quantum mechanics - vorticity

can only arise as 2π topological defects of the macroscopic single-particle wavefunction of

the quantum many-body system. The characteristic density and phase profiles of a system

containing a central vortex may be viewed in Fig. 2.1, where we see a density dip at the

vortex core and a corresponding discontinuity in the phase profile. In addition, we observe

the velocity profile in the presence of this topological defect.

These defects manifest as vortex lines, or filaments, in the three-dimensional cases. As

well as possessing a circulating flow, the vortex lines have a core of depleted density about

their axis, out to a core radius a0 which is of the order of the superfluid healing length. In

helium-4 and helium-3 the vortex core size a0 is around 10−10m and 10−8m, respectively.

In addition, vortices have been successfully visualised in ultracold atomic systems, wherein
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Figure 2.1: Density and phase information for a central singularly-charged vortex in a uniform
2D system. White arrows are superimposed whose size and orientation depict the amplitude and
direction of the velocity profile of the fluid, as given by Eq. (1.62). We visualise the phase and
density concurrently using a technique outlined by Stagg [55].

the healing length can vary in a wide range of the micron scale [56–60].

Superfluidity may be defined by the characteristic behaviour exhibited by a quantum

fluid. For example, a superfluid state possesses phase stiffness, in that if we were to ro-

tate a superfluid at given angular frequency Ω, then in the Galilean laboratory frame

rotating at the same frequency the fluid would be at rest. Additionally, once in motion,

the superfluid remains undamped by viscous boundary forces like in a typical fluid. The

textbook paradigm of superfluidity is a cylindrical bucket of superfluid helium rotating

at constant angular frequency Ω. Classical solid-body rotation is forbidden by the ir-

rotational nature of the superfluid. At sufficiently small values of Ω, the fluid remains

quiescent. However, if Ω is increased past a critical value Ωc, the presence of a vortex

line is energetically favourable. Using hydrodynamic arguments and up to a logarithmic

correction, it is estimated [40] that this critical angular frequency is

Ωc =
!

mR2
ln

&
R

a0

'
, (2.1)

where m is the mass of a helium atom, and R is the radius of the bucket. At larger values

of Ω, two vortices become favourable, and so on. For Ω ≫ Ωc the stationary state of the

fluid is the famed vortex lattice, an array of vortex lines aligned along the axis of rotation

31



Chapter 2. Spin-up of a superfluid vortex lattice driven by rough boundaries

with areal density

nv =
2Ω

κ
, (2.2)

known as Feynman’s rule. The vortex lattice was first imaged in superfluid helium by

Packard et al [61] and more recently by Bewley et al [62]. The lattice has also been

observed in ultracold gaseous superfluids trapped by smooth confining potentials [58, 63],

with some containing more than 300 vortices [64].

The process in which the vortices enter the superfluid in the first place is called vortex

nucleation. Being associated with a 2π phase singularity of the macroscopic wavefunction,

a vortex line is topologically protected. Thus, starting from some initially vortex-free

state, vortices must enter the superfluid as a result of some mechanism. In a trapped

BEC, vortices may either be nucleated by rotating the trapping potential or alternatively

by introducing a dynamical obstacle or impurity [65, 66]. In the former case, the vortex

enters spontaneously via a dynamical instability from topological deformations on the

condensate. In the latter case, vortex lines may be generated extrinsically by stretching

some pre-existing vortex lines called “remanent vortices” which, under suitable conditions,

can spool additional vortices [67]. Remanent vortices are thought to arise when cooling

the helium sample through the superfluid transition, and can be avoided by using careful

experimental protocols [68]. We note here that other protocols are available for vortex

generation in ultracold atomic systems, including the Kibble-Zurek mechanism [69], spin-

orbit coupling [70, 71], and others. The Kibble-Zurek mechanism predicts the formation

and approximate density of topological defects (vortices) through a phase transition at a

rate governed by quench duration [72, 73]. Spin-orbit coupling techniques utilise rotating

Raman lasers which, through spin-orbit interaction, generate vortex structures.

Individual vortex nucleation in a rotating bucket, either intrinsic or extrinsic, has

never been visualised in detail. Experimentally, it remains challenging to image the flow

in the vicinity of a boundary, despite progress in flow visualisation in the bulk [62, 74,

75], more so because the microscopic scale of the vortices themselves. Theoretically, the

nucleation problem has been addressed using energy arguments [76, 77] with no insight in

the dynamics. With few exceptions [78], the effect of microscopic boundary roughness on

the vortex nucleation has not been studied. A related and better understood nucleation

process takes place when an ion bubble is driven in liquid helium by an applied electric field.

Compared to the bucket, the nucleation is more controlled in terms of geometry (the shape

of the bubble can be determined theoretically) and velocity (experimentally determined

by time of flight measurements). Vortex nucleation by the ion bubble has received much

more detailed experimental and theoretical attention [79–83] than nucleation by the walls

of the bucket which contains the helium sample.

For what follows, we are not concerned with the vortex nucleation as such, but rather

with the intermediate state between the nucleation and the final vortex lattice. This
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intermediate stage is still unexplored, but, given that the length scales and the time

scales involved depend on the vortex separation rather the vortex core size (i.e. they are

mesoscopic rather than microscopic), there is prospect of experimental visualisation in

the near future. The focus of attention is therefore not individual vortex dynamics at

nucleation but the collective dynamics of many vortex lines in the presence of a boundary

which is not smooth. For simplicity we limit the scope of our problem to a low-temperature

regime, in which the normal fluid does not play an important role.

The traditional method to model the dynamics of superfluid vortices is the Vortex

Filament Method (VFM) [84], which models vortex lines as infinitesimally thin filaments

interacting with themselves, their neighbours and the boundary (via suitable images).

However, this approach is not applicable to our problem. Firstly, if the boundary varies

on atomic length scales comparable to the vortex core (which is likely to be the case for

any metal or glass bucket containing liquid helium), then the core lengthscale can no

longer be ignored compared to other relevant lengthscale, invalidating the assumptions

behind the VFM. Secondly, the implementation of the boundary condition is cumbersome

to set up and not simple to change from one boundary shape to another; indeed, the

VFM has been implemented for plane [85], semi-spherical [85, 86], spherical [87, 88] and

cylindrical [89, 90] boundaries, but never for irregular boundaries relevant to our problem.

Thirdly, the VFM does not describe vortex nucleation, but requires one to initialise the

calculation with arbitrary seeding vortex lines. An alternative approach is through the

Gross-Pitaevskii equation Eq. (1.56) [2, 40]. This formal description of a dilute weakly

interacting gas of bosons, is equivalent to a continuity equation

∂n

∂t
+∇ · (nv) = 0 (2.3)

and an Euler-like equation

n

&
∂v

∂t
+ (v ·∇)v

'
= −∇p−∇P− n∇

&
V

m

'
(2.4)

for an inviscid fluid (the modification being the presence of a quantum pressure term)

under the hydrodynamic decomposition

Ψ(r, t) =
!
n(r, t) exp[iS(r, t)]. (2.5)

While the GPE is an excellent quantitative description of Bose gas superfluids, it is limited

to being a qualitative description of superfluid helium due to the stronger interactions

taking place in a liquid rather than in a gas. Nevertheless, its capability to describe the

microscopic detail of superfluid dynamics - the finite-sized core, vortex interactions and

reconnections, even the intrinsic nucleation - makes it a useful model to study superfluid
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flows at a boundary. An important feature is that the GPE can easily implement irregular

boundaries. Indeed, recent GPE simulations have predicted the occurrence of a turbulent

boundary layer when the superfluid flows past a locally rough surface [78]: above a critical

imposed flow speed, vortices are nucleated from the surface features, interact and become

entwined in a layer adjacent to the surface.

Returning to the rotating bucket of superfluid helium, it is natural to ask if some kind of

boundary layer may similarly form at the boundary of the rotating bucket in the transient

evolution to the vortex lattice. Whether disordered or laminar, this layer will certainly

involve vortex interactions. It is in fact unlikely that the vortex lines which nucleate

extend from the top to the bottom of the bucket, as if the process were essentially two-

dimensional (2D). More likely, the first vortex lines which nucleate are small, and become

long only after a sequence of interactions and reconnections. To qualitatively explore and

quantify these interactions, here we perform a series of numerical experiments, based on

the GPE, of a superfluid being spun-up in a bucket whose walls are microscopically rough.

These numerical experiments allow us to build a physical picture of how vorticity enters

the superfluid and forms a vortex lattice, and of the role of remanent vortices, sharp

intrusions, rotation rate, and dimensionality.

2.2 Numerical recipe

We make two physically-motivated modifications to the basic GPE in Eq. (1.56). Firstly,

since the GPE conserves energy, we follow other works [91–93] in introducing a phe-

nomenological dissipation term into the GPE to model, at least in a qualitative way, the

damping of excitations of the superfluid (for example, by their interaction with the normal

fluid). This is achieved by replacing the left-side of Eq. (1.56) with (i−γ)! ∂Ψ/∂t, where γ
specifies the strength of the dissipation. Although not as accurate as the friction included

within the VFM, this phenomenological dissipation will help damp out the oscillations

of the vortex lines (Kelvin waves) [94, 95], which is the main effect of the friction which

concerns us here. Secondly, given our rotating scenario, we work in the reference frame

rotating at constant angular frequency Ω about the z axis; this is achieved by introducing

the angular momentum operator defined as

L̂ = R̂× P̂ (2.6)
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with R̂ = r and P̂ = −i!∇. We can alternatively write the components of Eq. (2.6) as

differential operators and introduce

L̂x = −i!
&
y
∂

∂z
− z

∂

∂y

'
(2.7a)

L̂y = −i!
&
z
∂

∂x
− x

∂

∂z

'
(2.7b)

L̂z = −i!
&
x
∂

∂y
− y

∂

∂x

'
, (2.7c)

where L̂x, L̂y, L̂z correspond to rotation around the x, y, and z axis respectively. Thus

we use Eq. (2.7c) to modify the GPE as necessary and write

i!
∂Ψ(r, t)

∂t
=

&
− !2

2m
∇2 + V (r, t) + g|Ψ(r, t)|2 − µ− i!Ω

5
x
∂

∂y
− y

∂

∂x

6'
Ψ(r, t). (2.8)

The initial condition for Ψ in all of our simulations is the non-rotating ground state

solution, found by the method of imaginary time propagation of the GPE, supplemented

with low-amplitude white noise to Ψ (amplitude 0.001) to break any symmetries artificially

presented in the initial condition. We then impose a constant rotation on the system for

t > 0, with fixed rotation frequency Ω. Note that Ω far exceeds the critical rotation

frequency to support vortices Ωc, such that the lowest energy state of the fluid is a vortex

lattice.

The non-dimensionalisation of the GPE is based on the natural units of the homo-

geneous fluid [40]: the unit of length is the healing length ξ, the unit of speed is c, the

unit of time is τ = ξ/c = !/µ0, the unit of energy is µ0, and the unit of density is n0.

Both our 3D and 2D numerical simulations of the GPE are performed using XMDS2 [96],

an open-source partial and ordinary differential equation solver. The time evolution of

the dimensionless GPE is computed via a fourth order Runge-Kutta integration scheme

(see Appendix B.4) with typical time step dt = 0.01τ and grid spacing dx = 0.4ξ; these

discretisation numbers are sufficiently small to resolve the smallest spatial features (vor-

tices and the fluid boundary layer, which are of the order of a few healing lengths) and

the shortest timescales in the fluid. We typically conduct our 3D simulations on a cubic

grid of size 2563. Threaded parallel processing is employed using the OpenMP standard

across typically 44 threads to improve processing speeds on computationally intensive

simulations.

2.2.1 Bucket set-up

We consider the fluid to be confined within a cylindrical bucket of radius R and height

H. The axis of the cylinder is the z-axis of rotation. The bucket is modelled through
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Figure 2.2: Example 2D fractional Brownian motion surfaces with the same numerical seed value
with Hurst index (a) H=0.3, (b) H=0.5, (c) H=0.8 respectively. We stress that that the surface
used to generate the rough bucket potential in our simulations is made periodic through a mirroring
process, as discussed in the main text.

the potential V (r): in the interior of the bucket we set V = 0 while at the boundary

and beyond we set V ≫ µ0. In the ground state, the fluid density has the bulk value n0

in the centre of the bucket, while close to the bucket wall it heals to zero density over a

length scale characterised by the healing length ξ = !/√mn0g. The healing length also

characterises the size of the cores of vortices in the fluid. Note that the chemical potential

in the bulk is µ0 = n0g. The speed of sound in the uniform systems is c =
!
n0g/m.

It is clearly computationally impossible to simulate the range of length scales which

are realistic for a typical experiment with liquid helium in the context of the GPE model.

The dimensions (radius and height) of typical buckets used in the experiments are of the

order of the centimetre, which is around eight orders of magnitude larger than the vortex

core size in helium-4, a0 = 10−10m (in helium-3 the vortex core is about 100 times larger).

Instead, in our numerical experiments we employ buckets whose scale is around 2 orders

of magnitude larger than the vortex core size. While this is clearly a vast scale reduction

compared to real systems, the separation of scales between the vortices and the bucket

size is sufficient to give us a qualitative insight into the dynamics of the vortex lines.

2.2.2 Surface roughness

To mimic the experimentally unavoidable surface roughness, we modify the azimuthal

face of the bucket away from a perfect cylindrical shape using a noisy continuous two-

dimensional (2D) function f . This function is numerically generated through a two-

dimensional fractal Brownian motion process [97–99] with Hurst index of H = 0.3, a

parameter which describes the fractal dimension of the surface [100]. In Fig. 2.2 we

demonstrate three realisations of fractional brownian motion with different Hurst indexes.

Here we can observe a higher-frequency noise associated to a low Hurst index [Fig. 2.2(a)],

and a lower frequency noise with increasing Hurst index [Fig. 2.2(b-c)]. The choice to
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Figure 2.3: (a) An example of the 2D fractional Brownian motion function f , normalised to the
range [0,1] and mirrored about φ = 0, shown as a surface plot and a heatmap. (b) The rough
cylindrical boundary of our bucket is formed by using the surface in (a) to modulate the radius of
the bucket boundary with an amplitude a, according to Eq. (2.9). Here a = 0.1, R = 50ξ.
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model the roughness in this way is motivated by the well established fractal properties of

real surfaces, including machined surfaces (of relevance to helium experiments), and the

success of fractal brownian motion in modelling a wide variety of real rough surfaces [101].

The function is normalised between 0 and 1, and is mirrored about its edge and recom-

bined with itself in order to create periodicity across one dimension; a single realisation

of the function is depicted in Fig. 2.3(a). The function is mapped onto the space of axial

coordinate z and azimuthal angle φ, and used to modify the radius of the bucket according

to the form,

r(z,φ) = R(1− af(z,φ)), (2.9)

where R is the smooth bucket radius and a is the (dimensionless) roughness parameter.

One could have chosen to implement the roughness via a summation of Fourier modes

which would impose a natural periodicity. However this would require a spectral analysis

of the surface of a typical confining potential, and goes beyond the scope of what we wish

to investigate in what is already an analogue system of reduced complexity. The numerical

procedure utilising Eq. (2.9) generates all of our rough 3D bucket shapes. By computing

the local curvature of the surface roughness, we find that the values of the average radius

of curvature corresponding to values a = 0.05, 0.1, 0.2 and 0.3 of the roughness parameter

are 10.4ξ, 5.2ξ, 2.6ξ and 1.7ξ respectively (small values of a correspond to large radius

of curvature, i.e. smoother surface). For simplicity, the top and bottom surfaces of the

bucket are left smooth. The reason is that, by providing the vortex lines with pinning

sites, any roughness on these surfaces will act essentially as an extra friction (an effect

which is already qualitatively accounted for via the dissipation parameter γ) slowing down

the final stage of crystallisation of the vortex lattice and prohibiting direct comparison to

the 2D reduction of this system.

2.2.3 Typical spin-up dynamics

We now demonstrate the typical spin up of an initially quiescent fluid. Unless otherwise

indicated, we present results for the following choice of parameters: bucket radius R = 50ξ,

bucket height H = 100ξ, rotation frequency Ω = 0.02 τ−1, dissipation parameter γ = 0.05,

and roughness parameter a = 0.1 (meaning that the irregular surface of the bucket extends

radially from 45ξ to 50ξ, corresponding to irregular ‘surface bumps’ of height up to 5

healing lengths).

The evolution of the fluid is illustrated by the snapshots shown in Fig. 2.4 in which

the vortex lines are tracked in 3D space using a precise method introduced by Villois

et al [102]; movies of the evolution are available in the supplementary material of [103].

From the initial quiescent and vortex-free fluid, first we see the nucleation of vortex lines

at the cylindrical boundary of the fluid [Fig. 2.4(a)]. The nucleation takes place at the
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(a) (b) (c)

(d) (e) (f)

Figure 2.4: Three-dimensional snapshots at times t/τ = 100 (a), 200 (b), 500 (c), 1000 (d),
1500 (e) and 3000 (f) during the spin-up of the initially quiescent fluid. The vortex cores are
identified by density isosurfaces; vortices with positive and negative circulation (as determined by
their pseudo-vorticity [102] in the z direction) are visualised in red and blue respectively. The
faint yellow isosurface represents the confining bucket. A false-color shadow is projected onto the
bottom surface to enhance the visualisation of the 3D vortex lines.

sharpest features on the surface, as seen in a previous calculation over a flat rough surface

[78]: at these features the local (potential) flow velocity is raised by the curvature of

the boundary, and exceeds the critical velocity of vortex nucleation, which, according to

Landau’s criterion, in a Bose gas is vc ≈ c. Since the local flow speed around a moving

obstacle always exceeds the translational speed of the obstacle, Landau’s criterion can

be satisfied by a translational speed less than c. For example, a cylindrical obstacle

moving at speed approximately equal to 0.4c will nucleate vortices [104, 105]. In our case
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Figure 2.5: Azimuthal velocity vθ of the fluid as a function of radius r, for rotation frequencies
of Ω = 0.02 τ−1 (a) and Ω = 0.06 τ−1 (b). We use roughness parameter a = 0.1. The solid red
lines represent solid body rotation vθ = Ωr; the blue lines are values of vθ(r) averaged in the θ
direction; the pale blue rectangles are histograms with bin size ∆r = 5ξ (therefore the outer bins
contain more data points). It is apparent that the more rapid rotation (b) creates a vortex lattice
in better agreement with the solid body rotation, and that there is a vortex-free region near the
boundary.

(Ω = 0.02/τ and R = 50ξ), the translational speed of the prominences on the rough

boundary is approximately ΩR ≈ c, which is sufficient to exceed Landau’s criterion and

nucleate vortices. Figure 2.4 (a) and (b) show that the vortex lines which nucleate at

the rough boundary have the shape of small half-loops or handles; similar vortex shapes

have been reported in trapped Bose-Einstein condensates [106] and turbulent superfluid

helium-4 near a heated cylinder [107], and have been called respectively “U-vortices” and

“handles”.

The collection of U-vortices nucleated at the boundary is the superfluid’s analog of a

boundary layer, the region separating the rotating boundary from the still quiescent bulk

of the fluid. The U-vortices tend to be aligned along the z-direction, creating a superflow

in the same direction of the rotating boundary. The vortex nucleation is therefore short-

lived, since the nucleated U-vortices reduce the relative motion between the fluid and

the boundary, suppressing further nucleations. In time, the U-vortices grow in size and

extend further into the fluid [Fig. 2.4(b,c)], ultimately filling the bulk [Fig. 2.4(d)]. During

this stage of the evolution, the U-vortices also grow in vertical extent in the z-direction,

occasionally connecting and merging with each other, thus increasing their vertical extent.

When the length in the z-direction becomes of the order of the bucket’s height H, one or

both vortex endpoints start sliding along the smooth top and/or bottom of the bucket.
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Figure 2.6: Evolution of the total vortex length, Λ (solid lines), as well as the vortex length in
the z-direction, Λz (dashed lines) and the vortex length in the xy-plane, Λxy (dot-dashed lines),
plotted versus time t for different angular velocity of rotation Ω = 0.02 τ 1 (black), 0.04 τ−1 (blue)
and 0.06 τ−1 (red) achieving final values of the vortex length Λ∞ = 2184ξ, 6007ξ and 5568ξ
respectively. All curves refer to roughness parameter a = 0.1.
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Figure 2.7: Evolution of the total vortex length, Λ (solid lines), as well as the vortex length in
the z-direction, Λz (dashed lines) and the vortex length in the xy-plane, Λxy (dot-dashed lines),
plotted versus time t for different boundary roughness a = 0.05 (red), 0.1 (black), 0.2 (blue), and
0.3 ξ (magenta), achieving final values Λ∞ = 1899 ξ, 2184 ξ, 2161 ξ and 1643 ξ. All curves refer
to the same angular velocity Ω = 0.02 τ−1.
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Once most of the vortex lines are fully extended from the top to the bottom of the bucket,

they quickly drift into the bulk of the fluid. Although the vortex lines are aligned along

the direction of rotation, they remain highly excited and undergo reconnection events

when they collide with each other. Over time they relax towards a regular configuration

of straight vortices. A small proportion of U-vortices remain attached to the side of the

bucket for a longer period of time [Fig. 2.4(d)]; over a longer time they detach, and relax to

the final lattice configuration. Some of the vortex lines end up diagonally across the rest of

the vortex lattice [Fig. 2.4(e)]; eventually they also relax to the final lattice configuration

[Fig. 2.4(f)]. The vortex lattice is stationary in the rotating frame, representing the lowest

energy state of the rotating superfluid. In this final state, the coarse-grained fluid velocity

approximates the solid-body result v = vθ eθ = Ω r eθ, where eφ is the azimuthal unit

vector, as shown in Fig. 2.5. As expected, the agreement improves with increasing Ω, and

there is a vortex-free region near the boundary.

2.2.4 Role of angular velocity and roughness

To analyse the vortex dynamics further it is useful to distinguish the total vortex length

Λ, from the vortex length projected in the z-direction, Λz, and the vortex length projected

in the xy-plane, Λxy. In the final vortex lattice all vortex lines are aligned along z, hence

we expect that, after a sufficiently long time, Λxy ≈ 0 and Λz ≈ Λ, with Λ → NvH,

where Nv is the final number of straight vortex lines. Figure 2.6 displays Λ (solid lines),

Λz (dashed lines) and Λxy (dot-dashed lines) as a function of time for different angular

velocities of rotation, Ω = 0.02, 0.04 and 0.06 at the same roughness parameter a = 0.1.

It is apparent that in the initial stage, a great amount of vorticity is in the xy-plane,

before realignment of the vortex lines along the z-axis of rotation takes place. The effect

is particularly noticeable at the largest angular velocities, for which, during the initial

transient, the vortex length is considerably larger than the value Λ∞ achieved in the final

vortex lattice configuration. Moreover, we see that the final vortex line length increases

with Ω due to the increasing number of vortices in the final state.

Figure 2.7 shows Λ, Λz and Λxy plotted versus time at the same angular velocity

Ω = 0.02τ−1 for different values of roughness parameter a. The largest values of the

final vortex length Λ∞ are achieved with a = 0.1ξ and a = 0.2ξ. Smoother (a = 0.05ξ)

and rougher (a = 0.3ξ) boundaries generate less vortex length. These variations in the

final line length arise to the final number of vortex lines varying by a few vortices across

these cases. It is not surprising that the final vortex lattice depends on the roughness

which has nucleated the initial vorticity. We highlight that Feynman’s rule, as introduced

by Eq. (2.2) only refers to an idealised homogeneous system. Boundaries are known to

have effects (e.g. missing vortex lines near the boundary) and it has been observed that

the formation of the vortex lattice may be history-dependent and involve metastability
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Figure 2.8: Normalised density n/n0 and phase profile S in the xy-plane at the half-height of the
bucket visualised by transparency and colour respectively, showing the final vortex configurations
for the following cases: (a): Ω = 0.02 τ−1 and a = 0.1 (default choice); (b): Ω = 0.04 τ−1 and
a = 0.1 (double rotation); (c): Ω = 0.06 τ−1 and a = 0.1 (triple rotation); (d): Ω = 0.02 τ−1 and
a = 0.05 (half roughness); (e): Ω = 0.02 τ−1 and a = 0.2 (double roughness); (f): Ω = 0.02 τ−1

and a = 0.1 (single strong protuberance added, see Section 2.3.1).

[108, 109] and hysteresis [110].

Figure 2.8 illustrates some of the final vortex patterns which we have computed by

concurrently plotting the superfluid density |ψ(x, y)|2 and phase S(x, y) in the xy-plane

at half-height of the bucket. In these pictures the vortices appear as small holes; to

clarify the lengthscales, we recall that on the vortex axis the density is zero and that

at distance r = 2ξ from the axis, the density recovers about 80% of the bulk value at

infinity. It must be stressed that the figure shows slices of 3D vortex configurations, not

vortex patterns. Note that at half-height the vortex lines are as far as possible from the

top and bottom boundaries, therefore more likely to be bent away from the ideal 2D

vortex pattern. It is interesting to compare the different final vortex configurations for

halved/doubled rotation velocity and the roughness parameter with respect to our default

choice (Ω = 0.02 τ−1 and a = 0.1). While the ideal 2D vortex lattice has a vortex at the

centre, surrounded by a first row of 6 vortices, a second row of 12 vortices, etc, the vortex

configurations shown in Fig. 2.8 contain slightly different vortex numbers, in particular

some configurations contain vortex lines which seem misplaced [Fig. 2.8(c)] or lack the

vortex at the centre [Fig. 2.8(e)]. These configurations are metastable states corresponding
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to local minima of the free energy in the rotating frame [108]. Moreover, at slow rotations

[Fig. 2.8(a,d)] the predicted vortex-free region near the boundary [77, 111, 112] is clearly

visible; this phenomenon affects the coarse-grained azimuthal velocity near the boundary

shown previously in Fig. 2.5(a). The depletion of the background fluid density in the

centre of the bucket - particularly evident in Fig. 2.8(b) and (c) - is due to coarse-grained

centrifugal effects, analogous to the classical rotating case [40].

2.3 Other effects

In this section we repeat the simulation of Section 2.2.3 with several significantly modi-

fications: the presence of a single strong protuberance, the presence of remanent vortex

lines, and the 2D case. The aim is to determine whether these effects change qualitatively

the dynamics described in Section 2.2.3.

2.3.1 Effect of a strong protuberance

First we consider the effect of a single strong imperfection in the form of a protuberance

on the cylindrical wall. The question is whether, by enhancing vortex nucleation, the

protuberance can induce a turbulent boundary layer. The protuberance is numerically

created by adding a Gaussian-shaped potential to the existing (small-scale) roughness

potential. Equation (2.9) is replaced by

r(z,φ) = R[1− a(f(z, θ) +GfG(z, θ))], (2.10)

where G = 2 and fG(z, θ) is a Gaussian-shape function taking values from 0 to 1 and rms

width 4ξ. The approximate height of the strong protuberance in the simulation which we

present is 10ξ, as also visible in Fig. 2.8(f).

Snapshots taken during the time evolution for Ω = 0.02 τ−1 and a = 0.1 are shown

in Fig. 2.9 and a movie can be viewed in the supplementary material of [103]. The

protuberance catalyses the local nucleation of vortices at early times: large vortex loops

(of the same size order as the protuberance) are rapidly generated [Fig. 2.9(a)], leading to a

downstream trail of loops [Fig. 2.9(b, c)], in addition to the slower nucleation of U-vortices

from the rough bucket wall. The vortex configuration becomes clearly anisotropic near the

bucket edge [Fig. 2.9(d)]. However, once the vortices fill the bulk [Fig. 2.9(e)], memory of

this effect is lost, and the subsequent evolution is very similar to the evolution without the

strong protuberance. In fact, the final vortex lattice is not significantly different from the

lattices considered in Section 2.2.3, as shown in Fig. 2.8(f). Figure 2.10 shows the time

evolution of Λ, Λz and Λxy in the presence of the protuberance (magenta lines) and its

absence (black lines). This confirms that the protuberance accelerates the generation of
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(a) (b) (c)

(d) (e)

Figure 2.9: Early-time dynamics during the spin-up of the fluid in the presence of a single strong
protuberance added to the rough cylindrical boundary. The snapshots, taken at t/τ = 26, 50, 100,
200 and 500, are presented in the same way as Fig. 2.4.

vortex line length at early times by inducing a region of increased superfluid velocity, but

that its effect becomes washed out at later times.

2.3.2 Effect of remanent vortices

Secondly, we consider the effect of remanent vortex lines. In experiments with liquid

helium, it is believed that so-called ‘remanent vortices’ may be present in the fluid, created

via the Kibble-Zurek mechanism when cooling the helium sample through the superfluid

transition to the final experimental temperature. The presence of remanent vortices may
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Figure 2.10: Time evolution of Λ (solid line), Λz (dashed line), Λxy (dot-dashed line). The colours
correspond to the simulations with default parameters Ω = 0.02τ−1, a = 0.1ξ (black), the added
surface protuberance (magenta), the added remanent negative vortex (blue), and the added rema-
nent positive vortex (red), respectively.

modify the vortex nucleation and the formation of the vortex lattice when the sample is

rotated. To explore this idea, we have repeated the simulations imposing a suitable phase

profile to imprint a vortex to the initial state during the imaginary-time propagation that

is given by

Sv(r) = Γ arctan

&
y − yv
x− xv

'
(2.11)

which corresponds to a vortex of circulation Γ at position (xv, yv). For simplicity we

position the remanent vortex along the z-axis of rotation, such that xv = yv = 0 and

restrict our analysis to the singularly charged vortex such that |Γ | = 1. The evolution of

the superfluid with the standard rough cylindrical wall and a “positive” remanent vortex,

that is, one whose circulation (Γ = 1) is oriented in the same direction of the bucket’s

rotation is shown through Fig. 2.11 and the movie in the Supplementary Material of

Keepfer et al [103]. Compared to Section 2.2.3, the only significant modification is a

dampening of the initial injection of U-vortices; the effect is visible by eye when comparing

like-time snapshots [Fig. 2.4(b) and Fig. 2.11(a)]. The remanent vortex acts in the same

direction as the rotating container: it reduces the relative speed between the bucket’s wall

and the superfluid, remaining largely undisturbed at early times [Fig. 2.11(a)] until the U-

vortices that are nucleated fill the bulk and interact with it [Fig. 2.11(b)]. At this point the

remanent vortex becomes subsumed within the other like-signed vortices [Fig. 2.11(c)], and

46



Chapter 2. Spin-up of a superfluid vortex lattice driven by rough boundaries

(a) (b) (c)

Figure 2.11: Spin-up of the superfluid in the presence of a positively-charged remanent vortex.
Snapshots are taken at t/τ = 200, 400 and 500, and are presented in the same way as Fig. 2.4.

the subsequent relaxation of the vortex configuration into a vortex lattice largely proceeds

as if there was not any remanent vortex initially. Confirming this, we see from Figure 2.10

that the presence of the positive vortex (red lines) depletes the generation of vortex line

length at early times, but this recovers at later times such that the system reaches the

same line length as in the absence of any remanent vortices (black lines).

If the remanent vortex is oriented in the direction opposite to the rotation of the

bucket, i.e. a negative vortex (Γ = −1), the evolution proceeds differently, as seen in

Fig. 2.12 and the movie in Supplementary Material [103]. The remanent vortex enhances

the nucleation of U-vortices from the boundary, as evident from comparing Fig. 2.4(b) and

Fig. 2.12(a). This effect is caused by the counter-flow induced by the remanent vortex,

which increases the relative speed of the fluid over the rough boundary. Once the other

vortices drift close to the remanent vortex, the remanent vortex becomes excited by their

interaction [Fig. 2.12(b)]. A series of vortex reconnections break up the remanent vortex,

forming progressively smaller vortex loops [Fig. 2.12(c,d)]. This leads to the rapid removal

of vorticity of the ‘wrong’ sign from the fluid [Fig. 2.12(e)]. Hereafter the fluid evolves in

a similar manner to when the remanent vortex in absent as in Section 2.2.3, albeit with a

slightly higher final vortex line length as evidenced by Fig. 2.10.

2.3.3 2D case

Finally, we have also performed simulations of the spin-up of a 2D superfluid within a

rough circular boundary; the boundary is taken from the central slice of the 3D rough

bucket. A movie showing the typical dynamics is available in the supplementary material
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(a) (b) (c)

(d) (e)

Figure 2.12: Spin-up of the superfluid in the presence of a negatively-charged remanent vortex.
Snapshots are taken at t/τ = 200 (a), 360 (b), 386 (c), 420 (d) and 500 (e). The images are
presented in the same way as Fig. 2.4. Vortices with negative circulation are coloured blue.

of Keepfer et al [103]. The 2D geometry allows calculations of much larger buckets, up

to R = 200ξ with a 10242 numerical grid. We observe the same qualitative behaviour

as in 3D in smaller buckets, albeit with many more vortices and without 3D effects such

as vortex reconnections. Collisions of vortices of the opposite circulation result in the

annihilation of the vortices and the emission of sound pulses [113–115]. In general we find

that, in 2D, the timescales of injection, diffusion and lattice crystallisation are faster than

in 3D. A particular feature that we see in the early-time dynamics of the 2D simulations

is the nucleation of vortices with both positive and negative circulation (i.e. with circu-

lation which is inconsistent with the imposed rotation). We notice that some negative
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vortices originate from localised rarefaction pulses generated from the rough boundary

when the bucket is set into rotation. We associate these pulses with Jones-Roberts (JR)

solitons [116, 117], which are low energy/momentum solutions of the 2D GPE. At higher

energy/momentum, these solutions become pairs of vortices of opposite sign (also called

vortex dipoles in the literature). The conversion of JR solitons into vortex dipoles occurs

if the pulse gains energy from the large positive vortex cluster which starts forming close

to the sharp boundary. Occasionally, the vortices which are parts of a dipole separate

and mix with the rest of the vortices. Over time, the vortices of negative circulation are

lost from the system, either colliding (hence annihilating) with positive vortices within the

bulk, or by exiting the fluid at the bucket’s boundary (effectively annihilating with their

images). The conversion from a JR soliton into a dipole pair is depicted in Fig. 2.13(a)-(c)

in the 2D larger grid geometry. To fully capture the behaviour of this event, we decom-

pose the hydrodynamic kinetic energy into its constituent compressible and incompressible

parts [118] and visualise the energy density for each. In the hydrodynamic description of

Eq. (2.5), the Hamiltonian becomes

H =

(
d3r

&
m

2
n|v|2 + !2

2m
|∇

√
n|2 + V n+

gn2

2

'
. (2.12)

The first two terms are forms of kinetic energy and we can write

Ekin =

(
d3r

&
m

2
n|v|2 + !2

2m
|∇

√
n|2

'
. (2.13)

The first term of this expression is a hydrodynamic one, whereas the second is known as

the quantum pressure. Omitting the latter, we can write the hydrodynamic kinetic energy

as

Eh
kin =

m

2

(
d3r n|v|2. (2.14)

where v is the superfluid velocity as given by Eq. (1.62). We can then introduce

u =
√
nv. (2.15)

to remove the divergence in the velocity field around vortex cores where n → 0 and permit

the application of Parseval’s theorem to calculate power spectra. This expression may be

separated into a compressible and incompressible part via a Helmholtz decomposition

u(r) = ui(r) + uc(r) (2.16)
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such that the divergence of the incompressible part ui is zero and the curl of the com-

pressible part uc is the zero vector. We can then write

Eh
kin =

m

2

(
d3r |ui|2 +

m

2

(
d3r |uc|2 = Ei

kin + Ec
kin. (2.17)

The compressible part corresponds to acoustic energy (phonons) and the incompressible

part corresponds to vortex structures. Using the spectral methods of Bradley et al [119],

we perform this decomposition and plot the compressible kinetic energy density eckin and

incompressible kinetic energy density eikin in the second and third rows of Fig. 2.13 re-

spectively. Here we see an exchange in the energy associated to the transformation of a

JR soliton into a vortex dipole pair. Before the transformation, the energy associated to

the density depletion is phonon-like [Fig. 2.13(d)]. As it propagates, it transfers to be a

combination of both compressible and incompressible energy [Fig. 2.13(e)-Fig. 2.13(h)],

before separating into a dipole pair where the energy is transferred into the incompressible

part [Fig. 2.13(i)].

2.4 Chapter conclusions

In this chapter, we have employed simulations of the Gross-Pitaevskii equation to study

the spin-up of superfluid helium in a rotating bucket featuring microscopically rough walls.

Within this model, we see several key stages of the dynamics. Firstly, vortices are nucleated

at the boundary by the flow over the rough features, typically in the form of small U-shaped

vortex lines. Secondly, these U-shaped vortices interact strongly and reconnect, creating

a transient turbulent state. This becomes increasingly polarised by the imposed rotation

until the vortex configuration consists of vortices of the correct orientation, extending

from the top to the bottom of the bucket. Finally, the vortex lines slowly straighten

and arrange themselves in the expected final vortex lattice configuration. Our results

highlight the importance of vortex reconnections [120]: it is generally assumed that vortex

reconnections are important in turbulence, but here we have seen that reconnections are

essential to create, starting from potential flow, something as simple as solid body rotation

(the vortex lattice). The addition of a single large protuberance or one additional remanent

vortex line does not change the dynamics significantly, only speeding up or slowing down

the injection of vorticity. Moreover, analogous dynamics arise in the 2D limit.

We reiterate that the GPE is not a quantitatively accurate model of superfluid he-

lium and these results should be interpreted qualitatively only. More sophisticated energy

functionals have indeed been developed previously for a quantitative description of super-

fluid helium [121] and are usually largely applied in the context of helium nanodroplets,

but here these would require computationally-intensive simulations for large systems such
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Figure 2.13: (a)-(c) Normalised density n/n0 and phase profile S visualised concurrently at times
(a) t = 60τ , (b) t = 70τ , (c) t = 90τ . These times correspond to before, during and after
a JR soliton transforms into a vortex dipole pair respectively. Circles of colour yellow, green
and blue have been superimposed to mark the position of the event before, during and after
respectively. The positions of positive (negative) vortices are indicated with red (blue) circles
(triangles). Panels (d)-(f) show the compressible kinetic energy density eckin(r) whilst panels (g)-
(i) show the incompressible kinetic energy density eikin(r) profile at the times indicated previously.

as the rotating bucket. Nevertheless, these functionals have successfully been applied to

study the nature of vortices in liquid helium systems [122]. Another potential consider-

ation is to accurately account for the role of friction. For example, the role of friction is

introduced into the GPE through a widely-used phenomenological dissipation term. How-

ever, a more accurate physical model of this stage of the dynamics would be provided by

the VFM. Also, a distinctive physical property of superfluid helium is its strong non-local

interactions. This, for instance, supports a roton minimum in its excitation spectrum. A

roton minimum arises from the interplay between short-range and long-range interactions

and corresponds to a local minimum in the dispersion relation of the energy. While this

is absent from the GPE model we have employed, it can be introduced through an addi-

tional non-local term [123, 124]. It would be interesting to see if this causes any significant

departures from the dynamics we have reported here.
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We now depart from the theory of trapped zero temperature Bose gases and in the

next chapter begin to explore the effects of temperature on a trapped system. Whereas

this chapter focused on the microscopic details of trapping topology on the dynamics of a

superfluid, the later chapters will explore the broader effects of a dimensionality-altering

trapping potential at finite temperature.
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Finite Temperature
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Chapter 3

Finite temperature stochastic

Gross-Pitaevskii methods

In this chapter, we take the opportunity to describe the primary theoretical tools used

within the second part of this thesis. Whilst there exists a plethora of novel classical field

finite temperature theories for the Bose gas [34, 125–128], and modifications thereof [129–

133], we focus on one in particular: the stochastic (projected) Gross-Pitaevskii equation.

Derived independently and concurrently by the approaches of Duine and Stoof [134–136]

and Gardiner and colleagues [137–139], each derivation gives rise to the same effective

theory. We focus primarily on the latter framework of the stochastic projected Gross-

Pitaevskii equation (SPGPE) and so use this chapter to introduce and motivate this

theory for our work.

3.1 The stochastic projected Gross-Pitaevskii equation

In its complete form, the SPGPE [127, 137–141] is a grand-canonical truncated Wigner

theory [127, 142] of Bose gases which explicitly separates atoms into a C-field region

and I-field region, taking account of interactions and exchanges between them. Arising

from developments in quantum kinetic theory [143–149] paired with finite temperature

formalism for the GPE [137, 138, 150], the framework of SPGPE separates the fields into

a classical coherent field and a quantum thermal reservoir. In essence, it encapsulates

the dynamics of a finite temperature coherent field coupled to a thermal cloud where the

two are assumed to be at equilibrium. Another pertinent assumption of this model is

that the frequencies of the C-field modes are much smaller than the thermal energy kBT .

Therefore the theory is better suited to describing systems at higher temperatures, close

to and above the transition. The SPGPE allows direct and immediate control of the

temperature of the thermal reservoir, which then equilibrates with the coherent modes.
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As such, a number of studies investigating quench dynamics of a Bose gas have utilised

this theory [28, 69, 151–153]. In general, the C and I fields may be out of equilibrium,

where parameter control of the system thermal bath leads the evolution of the coupled

condensate. The full derivation may be found in [138], although here we simply outline

the key steps taken in this framework.

3.1.1 Formulating the SPGPE

We take as our starting point the second quantised Hamiltonian in the s-wave scattering

limit as given by Eq. (1.47). Previously we used Eq. (1.49) to explicitly separate the

condensate from non-condensate modes. On this occasion, we instead decompose the full

quantum bosonic field as a sum

Ψ̂ = P̂Ψ̂ + R̂Ψ̂ = Ψ̂C + Ψ̂I , (3.1)

where Ψ̂C and Ψ̂I are quantum field operators for a low energy band C which contains

macroscopically-occupied modes, and a high-energy band I containing sparsely-occupied

modes, respectively. The separation of these fields is performed through the introduction

of orthogonal projection operators

P̂ ≡
#

!n≤!cut

|n〉〈n|, (3.2)

and

R ≡ 1− P̂. (3.3)

Here $n corresponds to the energy of mode ψn which satisfies the eigen-equation

ĥ0ψn(r) = $nψn(r), (3.4)

and we have introduced the energy cutoff $cut and single-particle Hamiltonian specified

by Eq. (1.42). The energy cutoff requires a careful choice in order to ensure the assump-

tion of macroscopic occupation for modes within C is met, and is discussed at length in

Section 3.1.3. Our projection operators are defined such that P̂P̂ = P̂, R̂R̂ = R̂ and

importantly P̂R̂ = R̂P̂ = 0. This partitions the full bosonic field into one of a classical

field in contact with a thermal reservoir such that

Ψ̂ =
#

!n≤!cut

ânψn(r) + Ψ̂I (3.5)

where ân are the single-mode creation operators satisfying [ân, â
†
m] = δnm, with â†m corre-

sponding to the single-mode annihilation operator. The formal derivation of the equation
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of motion of the classical field proceeds by mapping the master equation for the C-field
to an equation for the Wigner distribution of the system [138]. A key assumption here

is that energies of the coherent modes are small compared to the thermal energy kBT ,

which limits the validity of this formalism to the range 0.5 ≲ T ≲ Tc, where Tc is the

critical temperature of the phase transition. The resultant equation for the evolution of

the Wigner distribution effectively describes a diffusion process for the classical field ΨC

in contact with the I-field through rate functions which determine the strength of reser-

voir interaction processes [141, 154]. We note that a secondary assumption of the Wigner

distribution approach is exactly the truncated Wigner approximation. Consider a system

with a corresponding Wigner function W (ΨC(r),Ψ
∗
C (r), t), whose full evolution contains

third-order derivative terms of the form

∂W
∂t

∝
5

∂3

∂2ΨC∂Ψ∗
C

6
(ΨCW)−

5
∂3

∂ΨC∂2Ψ∗
C

6
(Ψ∗

CW) . (3.6)

Such terms preclude the mapping to a full Langevin-type equation. However, one may

omit them provided that all coherent modes are macroscopically occupied, something that

is ensured with a careful choice of cutoff energy $cut. We may then truncate the equation

of motion, allowing us to write the full SPGPE as

(S)dΨC = dΨC |H + dΨC |γ + (S)dΨC |S . (3.7)

In this expression, (S) denotes a Strantonovich integral [155] and

dΨC(r, t)|H = P̂C

F
− i

!

&
− !2

2m
∇2 + Vtr(r) + g |ΨC(r)|2

'
ΨC(r, t)dt

G
, (3.8a)

dΨC(r, t)|γ = P̂C

F
βγ

5
µ−

&
− !2

2m
∇2 + Vtr(r) + g |ΨC(r)|2

'6
ΨC(r, t)dt+ dξγ(r, t)

G
,

(3.8b)

(S)dΨC(r, t)|S = P̂C

F
− i

!
VM (r, t)ΨC(r, t)dt+ iΨC(r, t)dξM (r, t)

G
, (3.8c)

are the contributions due to the mixing of C-field modes, growth and scattering processes

respectively. Here, we have introduced the dimensionless dissipation strength [154]

γ =
8a2s
λ2
dB

∞#

j=1

eβµ(j+1)

e2β!cutj
Φ

5
eβµ

e2β!cut
, 1, j

62
, (3.9)

where Φ is the Lerch transcendent. We have also introduced the effective potential

VM (r) = − !2

kBT

(
d3r′M

0
r− r′

1
∇′ · j

0
r′
1
, (3.10)
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Figure 3.1: Schematic of SPGPE processes. (a) Mixing of modes within the C-field (b) Number
damping process, dictated by the rate set by γ for atoms to transfer from the thermal reservoir
into the coherent modes of the C-field (c) Scattering process whereby modes in the C and I fields
may transfer energy at a rate set by M(r), without a transfer of atoms.

which couples the divergence of the C-field density current

j(r) =
i!
2m

[ΨC∇Ψ∗
C − Ψ∗

C∇ΨC ] , (3.11)

to the I-field at a scattering rate governed by

M(r) =
2a2skBT

π2!
1

eβ(!cut−µ) − 1

(
d3k

eik·r

|k| . (3.12)

The complex Gaussian noise dξγ and real Gaussian noise dξM have correlations of the

form 8
dξ∗γ(r, t)dξγ (r

′, t′)
9
= 2γδ (r− r′) δ (t− t′)

〈dξ∗M (r, t)dξM (r′, t′)〉 = 2M (r− r′) δ (t− t′)
. (3.13)

The former governs the rate of growth processes arising from high-energy collisions in I,
leading to growth in the particle number of C, known as number-damping. The latter of

these noise processes represents a stochastic real-valued effective potential that causes a

phase-diffusion process for the C-field that permits the exchange of energy and momentum

with the I-field with no change in particle number, known as energy-damping.

Keeping just the first term on the right hand side of Eq. (3.7) as given by Eq. (3.8a)

yields exactly the projected Gross-Pitaevskii equation (PGPE). This corresponds to simu-

lating the interaction of highly-occupied coherent modes, as portrayed by Fig. 3.1(a). The

PGPE is formally an energy and number conserving theory sampling the micro-canonical

ensemble in equilibrium. It can be used as a non-perturbative approach to describe the

dynamics of the C field, yielding a quantitatively accurate description of finite temperature

systems near to equilibrium where the reservoir interaction can be neglected. Numerical

implementations of the PGPE are mainly limited to the study of equilibrium solutions of

finite temperature systems but there have been numerous forays into dynamical procedures

such as the excitation of collective modes and vortex decay [156, 157].

The second term, Eq. (3.8b), describes growth processes arising from the collisions be-

tween the coherent and incoherent regions, as shown in Fig. 3.1(b). The interactions from
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this term correspond to an exchange in both particle number and energy. We highlight

here, that whilst formally the dissipation of Eq. (3.9) should be spatially dependent, a

reservoir close to equilibrium maintains a spatially-constant growth rate [141] across the

majority of the C-field [154] and so we take a constant value.

Lastly, the third term Eq. (3.8c) introduces scattering processes, as schematically dis-

played in Fig. 3.1(c). These interactions are number-conserving and correspond to an

exchange in energy exclusively. We have introduced M(r − r′) as the amplitude of colli-

sions involved in the scattering processes. It is apparent from the final term in Eq. (3.8c)

that the noise term is multiplicative in ψC and nonlocal. As such, the numerical imple-

mentation of the full SPGPE, or the energy damped SPGPE, is highly non-trivial. Here

we refer to the energy-damped SPGPE [141] as one including contributions Eq. (3.8a)

and Eq. (3.8c), such that (S)dΨC = dΨC(r)|H + (S)dΨC(r)|S , which has been previously

used for the study of bright solitons [132]. The effects of the inclusion of the scattering

processes are negligible at equilibrium and small-amplitude in general [158], so one may

omit them or instead disable interaction with the thermal reservoir before numerically

studying dynamical processes by setting γ = 0 prior to dynamical evolution.

3.1.2 Simple growth stochastic projected Gross-Pitaevskii equation

Whilst there has been success in a full numerical implementation of the SPGPE [127, 137,

154, 159], the majority of numerical endeavours omit the scattering term, assuming it to

be negligible. Fortuitously, typical values of M(r − r′) are indeed small at equilibrium.

Neglecting the scattering term allows us to define the simple growth SPGPE which is

easier to numerically implement. With this in mind, and ignoring the scattering processes

associated with Eq. (3.8c), we are able to formulate the Langevin field equation

dΨC(r) = P̂C

F
− i

!

&
− !2

2m
∇2 + Vtr(r) + g|ΨC(r)|2

'
ΨC(r)dt

+
γ

!

5
µ−

&
− !2

2m
∇2 + Vtr(r) + g|ΨC(r)|2

'6
ΨC(r)dt+ dξγ(r, t)

G
.

(3.14)

This modified SPGPE describes a finite temperature condensate coupled to a non-condensed

thermal cloud and is of the form of a PGPE with additional dissipation and noise terms.

Now, with the additional presence of a projector we have an equation which is in functional

equivalence to the SGPE of Duine and Stoof [134–136, 160], as is formally documented by

Proukakis and Jackson [34]. In fact, Proukakis et al [150] concluded that the densities and

correlation functions of the two approaches, when numerically applied to a 1D Bose gas in

a harmonic trap, recovered near-identical results up to a small difference in the thermal

wings. With Eq. (3.14) we have now defined a useful stochastic numerical tool: individ-

ual runs of this equation correspond with a single experimental realisation and contain
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information about the fluctuations [153, 161]. Physical observables are obtained through

averaging over numerous simulations to remove noise inherent to the stochasticity of the

equation. The first numerical implementation of this equation was performed by Stoof

and Bijlsma [135] in an attempt to model the phenomenon of reversible condensation

formation experimentally performed at MIT by Stamper-Kurn et al [162]. Subsequent

implementations have diversified into a number of avenues such as numerical studies of

coherence [163, 164], atom lasers [165], atom chip dynamics [166] and potential atomtronic

devices [167].

3.1.3 Addressing the ultraviolet catastrophe

A major drawback of C-field methods in general is that they assume a high occupation

in the low-energy modes, effectively treating the quantum Bose operator as a classical

object. As such, the intrinsic quantised nature of the quantum theory described above is

replaced by a continuum of modes, such that the system can be described as a classical

wave. In high-energy regimes, this approximation fails spectacularly, and is regarded in

the literature as the ultraviolet catastrophe [168, §7]. Whilst modified theories [129] have

been proposed to address the ultraviolet divergence through a dynamical constraint of

high-energy modes to the Bose-Einstein distribution, we instead adopt a method which

will remove high-energy modes and thus propose an alternate theory unaffected by short

range interaction details. This is implemented through the splitting of the Bose field

operator into a classically treated low-energy coherent part C and a quantum mechanically

treated high energy incoherent part I via Eq. (3.1). This recasting of the complete field

is achieved by projecting out the incoherent modes with the operation

P̂{f(r)} =
#

n∈C
ϕn(r)

(
dr′ϕ∗

n

0
r′
1
f
0
r′
1
, (3.15)

such that

Ψ̂C(r) = P̂{Ψ̂(r)} =
#

n∈C
ânϕn(r), (3.16)

where ϕn are the eigenvectors of the single-particle Hamiltonian for modes within the C-
field with eigenvalues $C . This separation occurs at a carefully selected cutoff value such

that all modes in the coherent region are treated as classical objects and those above are

treated as quantum objects forming a static thermal reservoir. Therefore we can treat

Ψ̂C as a classical field and neglect the discrete nature of the atoms within the C-field.
The dynamics of the C-field can hence be determined via a phase-space correspondence

that maps the equations of motion for Ψ̂C to equations of motion for Ψ [127]. In this

formalism, we can view Ψ as a stochastic sample of the C-field’s approximate phase-space

distribution. In practice, we can treat Ψ as the outcome of a single experimental run
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and recover expectations of physical observables through ensemble averaging over many

independently realised trajectories. By setting the Bose-Einstein distribution to unity and

solving for the energy, we find the appropriate cutoff such that the highest energy mode in

the classical field correspondingly has occupation of order unity. In this choice, the cutoff

is given by

$cut = µ+ kBT log(2). (3.17)

Schemes for choosing a cutoff vary across the literature, however each choice requires that

physical observables calculated in the system are minimally sensitive to the value chosen

[169]. Whilst the SPGPE reduces to the PGPE theory at low temperatures, care should be

taken for simulations at low temperature when deciding a cutoff value. Using the protocol

of Eq. (3.17), the cutoff reduces to a value of µ at low temperature and the projector may

remove enough modes such that the healing length can no longer be accurately resolved.

As such, we adopt the cutoff

$cut = max{µ+ kBT log(2), 2µ} (3.18)

which combines the well defined method of setting the occupation to unity at the cutoff,

with an approach designed to minimise sporadic values when calculating observables at

low temperature. Besides the approach of a grid-spacing enforced cutoff, a value of ≈ 2µ

is widely adopted in other theoretical works using the SPGPE [69, 151, 156, 157].

3.1.4 Hybrid trapping geometry

In Part II of this thesis, we focus on the specific trapping geometry of an in-plane box

trap under transverse confinement. Before proceeding further, we take this opportunity

to formally introduce the specific trapping we employ whilst considering the effects of

dimensionality on our equilibrated system. We choose, as a reference, the experimentally

viable trapping geometry employed by the group of Dalibard. To achieve a quasi-2D geom-

etry, this group has devised an apparatus coined as an “optical accordion” which enforces

strong transverse harmonic trapping along the z-direction whilst providing a homogeneous

box trap along the xy-plane. A schematic of this apparatus is shown in Figure 3.2. This

apparatus includes a pairing of Digital Micro-mirror Devices (DMDs), which may be dy-

namically configured, allowing time-dependent alteration of the confining potential and

thus an easy implementation of an excitation protocol, as will become important later in

this thesis. To emulate this apparatus, we begin with a gas of 87Rb atoms trapped in a

box-harmonic hybrid potential (see Section 2.3 of [171]) given by

V (r) = Vbox(x, y) +
1

2
m

,ωref

Λ

-2
z2, (3.19)
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Figure 3.2: [Reprinted figure with permission from [170] Copyright (2022) by the American Physical
Society]. Sketch of the optical accordion configuration. By moving the initial beam by a distance
d, the angle between the two final beams θ can be adjusted, thus resulting in a configurable
trapping frequency ωz along the transverse direction. In-plane trapping can then be configured
using DMD’s. In this case, two are shown for an optional perturbation to be added in tandem
with the confining box, as we will perform in Chapter 5.

where ωref = 2π × 4.594 kHz as in the experiment of Ville et al [26] and serves as the

reference trapping frequency for the 2D case. Here, Vbox(x, y) is zero within a hard-walled

rectangular planar box of size Lx = 38µm, Ly = 30µm, and very large outside. To

systematically control the tightness of the harmonic confinement, we have introduced a

dimensionless parameter Λ, such that the transverse trapping frequency is

ωz = ωref/Λ (3.20)

and one can define a typical transverse length ℓz =
!
!/mωz =

√
Λ lref , where in our case

lref =
!

!/mωref = 0.1592 µm. Finally, the scattering length we employ is as = 5.09 nm,

which implies g = (0.064µm)!2/m. This interaction strength is chosen such that in the 2D

limit (Λ = 1) it reduces to the dimensionless value g̃2D = (m/!2) g2D =
√
8πas/lref = 0.16

equivalent to the one used in the aforementioned study. The box of size Lx, Ly is embedded

within a computational domain of size Lx = 43µm, Ly = 35µm. Due to our use of plane-

wave modes in the computational basis we employ (discussed at length in Appendix B.2),

this embedding removes unwanted periodicity within the system. We reserve discussion of

the physics of the Bose gas within the hybrid trap until Section 4.2. Later, in Chapter 5
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we will also explore the addition of a perturbation to this trapping potential, in order to

subsequently probe the sound speed.

3.1.5 Numerical implementation of the simple growth SPGPE

Having established the analytical formulation behind the stochastic (projected) Gross-

Pitaevskii equation, we now proceed to demonstrate the numerical implementation of

this theory. Implementations of the SPGPE have been used extensively to study dilute

ultracold Bose gases both dynamically [153, 172–175] and at equilibrium [28, 69, 71, 154,

157, 158, 176–186]. In addition, it has been used with remarkable success to match and

quantitatively describe experimental data [27, 151, 187, 188]. With simplified notation,

the equation we consider is

i!
∂Ψ(r, t)

∂t
= P

F
(1− iγ)

5
−!2∇2

2m
+ V (r) + g3D|Ψ(r, t)|2 − µ

6
Ψ(r, t) + η(r, t)

G
, (3.21)

where Ψ(r, t) represents the order parameter for the lowest, coherent system modes in the

C-field. The complex gaussian white noise η(r, t) has correlations of the form

〈η∗(r, t)η(r′, t′)〉 = 2!γkBT δ(r− r′)δ(t− t′), (3.22)

where 〈. . .〉 indicates we are averaging over different realisations of noise. We can then

consider this equation as a dissipative Gross-Pitaevskii equation with damping (from a

static thermal cloud) determined at a rate governed by γ. Whilst the value of γ should

theoretically depend on both position and time, given the uniform nature of potentials

we consider, we may ignore the temporal dependence. In fact, neglecting spatial depen-

dence is found to offer no significant alteration to the dynamics, as previously reported

in the literature [189]. Since our use of the SPGPE is reserved to the case of calculating

equilibrium configurations, we use a dissipation value of γ = 0.05, which is somewhat

higher but indeed of the same order of magnitude than those typically used for SPGPE

simulations [27, 28, 151, 190, 191]. Moreover, since we are not interested in the trajectory

to equilibrium and instead the equilibrium solution itself, this provides a simple way to

accelerate our numerical procedure. We introduce the characteristic time

τγ = !/µγ, (3.23)

which acts as a reference timescale to systematically pick an equivalent length of time

across dimensionality for the simulations we perform to equilibrate. (A detailed descrip-

tion of the preparation of a given equilibrium state is provided in Appendix B.1.) To

be clear, as we vary the dimensionality parameter Λ, the system size is altered. If the

chemical potential were to remain constant, then we would be comparing systems with
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Figure 3.3: Schematic of the C-field coherent region and I-field incoherent region for a harmonically
trapped Bose gas. Modes below cutoff are within the C-field and are included in the dynamics of
the SPGPE theory. This is in contrast to the sparsely occupied higher energy modes contained
within the I-field whose contribution to the dynamics are ignored. We display the lowest energy
accessible mode, known as the condensate mode, in green.

vastly different atomic densities. Instead, we systematically adjust the chemical potential

with dimensionality in order to maintain either the central atomic density or the Bogoli-

ubov sound speed, as discussed in Section 4.3. In this way, our characteristic timescale τγ

remains appropriate across dimensionality.

3.1.6 Numerical implementation of the projector

At every timestep during our simulation, we project the complete field using the projection

operator defined by Eq. (3.16). The use of a projector allows the implementation of the

high-energy cutoff discussed previously. Formally, this allows a dynamical description

of only the low-energy system of interest, where we remove thermal atoms and consider

them part of the thermal reservoir. A schematic of this process is displayed in Fig. 3.3.

The cutoff $cut may be numerically implemented by zeroing all modes outside a sphere in

momentum space of radius kcut =
√
2m$cut. When simulating the SPGPE using spectral

methods, we need to be sure that the domains of our wavevectors are large enough such

that we do not introduce artificial numerical aliasing. To negate this, following [127], for

a 3D numerical box of size L one might employ a condition twice as strict as the Nyquist
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sampling requirement such that the grid resolution

dr =
L

Nx,y,z
≤ π

2kcut
. (3.24)

In this way, we can be certain the relevant modes for the system are accessible, prior to the

projection operator. In our numerical scheme, we will enforce this domain size requirement

along the plane which is solved in the plane wave basis. However, as is discussed in

Appendix B, along the transverse direction we will utilise a Hermite-Gauss basis. Instead,

along the transverse direction, we take care to include enough modes to accurately capture

the occupied modes of the transverse direction in the modified basis and enforce the

grid resolution nz ≥ (2$cut − 1)/(2!ωz) for harmonic trapping of strength ωz. Since we

will be investigating the effects of dimensionality in later sections, we must consider the

effects of strong anisotropic harmonic trapping. To produce a quasi-2D condensate, we

enforce strong anisotropic harmonic trapping solely along the z-direction in tandem with

a hard-wall box trap along the plane. This causes a separation of energy scales, such that

!ωz ≫ (π2!2/2m)
0
n2
x/L

2
x + n2

y/L
2
y

1
where ωz is the harmonic trapping frequency in the

transverse direction and Lx, Ly are the box sizes along the planar directions. As such,

it may be the case in strongly dimensionally suppressed systems that the projector is

only enforced along the planar direction where modes are denser as opposed to the sparse

harmonic energy levels. This can be understood when we consider the energy landscape

of two model systems. In Fig. 3.4(a) we visualise the distribution of modes for the first 10

quantum numbers in x and y for a system with the same parameters as previously defined

in our 2D system (Λ = 1). Whereas in Fig. 3.4(b) we consider the energy landscape for

modes up to n = (30, 30, 10) for each dimensionality. Here we observe a staircase function

at low dimensionalities with strong harmonic trapping due to the separation of energy

scales between the normal and transverse directions. As dimensionality increases, these

scales become comparable and a smooth energy landscape is recovered towards our 3D

limit of Λ = 50.

3.2 Incoherent atomic density in the SPGPE

Despite the neglect of dynamics within the I-field, as is standard within the SPGPE

formalism [34, 127, 141], we should still account for atoms projected out when calculat-

ing numerical properties of the system. We want to calculate the number of incoherent

atoms above an energy cutoff $cut in the same hybrid trap as prescribed in Section 3.1.4.

In the SPGPE the chemical potential is fixed and the total number of atoms is deter-

mined as the sum of the coherent contribution NC coming from the C-field, solution of

the SPGPE, and the incoherent contribution NI . The latter is estimated assuming that
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Figure 3.4: For the system with Lx = 38µm, Ly = 30µm and ωref/(2π) = 4594Hz and ignoring the
zero-point energy we plot: (a) Energy for each accessible modes up to n = (10, 10, 0), colour coded
by the quantum numbers in x and y, normalised to the transverse energy scale !ωz for Λ = 1. (b)
Energies for the accessible modes up to n = (30, 30, 10) sorted in ascending order for each of the
considered dimensionalities, normalised by !ωz.

the incoherent atoms occupy the single-particle states of an ideal gas in the same trap

with mean occupation number at equilibrium given by the Bose-Einstein distribution:

NI =
$

E>!cut
1/{exp[(E−µ)/kBT ]− 1}. First, let us shift the scale of energy in order to

remove the zero-point energy !ωz/2. This must be done consistently also for the chemical

potential and the cutoff energy. Then

NI =
#

Ẽn>!̃cut

1

exp[(Ẽn − µ̃)/kBT ]− 1
, (3.25)

with

Ẽn =
π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
+ nz!ωz = Exy + nz!ωz , (3.26)

µ̃ = µ− (1/2)!ωz and $̃cut = $cut − !ωz/2. In the following, we restrict our notation and

choose the cutoff determined by Eq. (3.17), but pause here to specify that there is nothing

special about this value and we are free to choose another. With the shifted chemical
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potential µ̃, this becomes

$̃cut = µ̃+ kBT ln 2 . (3.27)

The sum has to be performed over the values of nx, ny and nz such that Ẽn > $̃cut. We

assume that, for each nz, the spectrum of states with different nx and ny is dense enough to

replace the sums with an integral over the energy. For each nz the states with different Exy

form a band, which starts from nz!ωz and has constant density of states mLxLy/(2π!2),
as for a 2D gas. Hence one can write

NI =
mLxLy

2π!2
∞#

nz=0

( ∞

Emin

dExy
1

exp[(Exy + nz!ωz − µ̃)/kBT ]− 1
, (3.28)

where

Emin =

)
*

+
$̃cut − nz!ωz for $̃cut > nz!ωz

0 for $̃cut ≤ nz!ωz .
(3.29)

Let us introduce the quantities t = Exy/kBT and z(nz) = exp[(µ̃ − nz!ωz)/kBT ]. The

incoherent atom number becomes

NI =
LxLy

λ2
dB

∞#

nz=0

( ∞

t̄
dt

1
et

z(nz)
− 1

(3.30)

where t̄ = Emin/kBT . It is convenient to separate the sum into two contributions,

NI =
LxLy

λ2
dB

.
n̄z−1#

nz=0

( ∞

t̄
dt

1
et

z(nz)
− 1

+
∞#

nz=n̄z

( ∞

0
dt

1
et

z(nz)
− 1

/
, (3.31)

where n̄z is the lowest value of nz for which nz!ωz > $̃cut, that is

n̄z = ⌈$̃cut/!ωz⌉ . (3.32)

Here, the lower integration limit in the second sum becomes zero in accordance with

Eq. (3.29). The integrals in the second sum are thus Bose-Einstein integrals of order

s = 1, so that

NI =
LxLy

λ2
dB

.
n̄z−1#

nz=0

( ∞

t̄
dt

1
et

z(nz)
− 1

−
∞#

nz=n̄z

ln (1− z(nz))

/
. (3.33)

while those in the first sum can be calculated numerically (or even analytically as we will

see below).

As will be discussed in the following chapter, we fix the chemical potential in the 2D
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limit to the value

µ = g2Dn2D +
!ωz

2
(3.34)

with n2D = 29µm−2 and g2D = 0.16!2/m. This ensures that the density and the chemical

potential in the 2D limit reduce to the experimental values of Ref. [26], which implies that

µ̃ = g2Dn2D = (4.64µm−2)!2/m . (3.35)

As discussed in Section 3.1.4, we recall that the harmonic frequency ωz is expressed in

terms of a reference frequency ωref = 2π × 4.59 kHz and a dimensionless parameter Λ

determining the tightness of the transverse confinement given by Eq. (3.20). We can

define the function

φnz(T,Λ) =
µ̃

kBT
− nz

!ωref

kBTΛ
, (3.36)

such that the fugacity is given by

z(nz) = eφnz (T,Λ) . (3.37)

In addition, since the shifted cutoff energy is $̃cut = µ̃ + kBT ln 2, the lower limit of

integration t̄ in Eq. (3.33) is expressed as

t̄(nz, T,Λ) =
µ̃+ kBT ln 2− nz!ωz

kBT
= ln 2 + φnz(T,Λ) (3.38)

and the threshold value of nz is

n̄z = ⌈(µ̃+ kBT ln 2)Λ/!ωref⌉ . (3.39)

With these definitions, the incoherent atom number becomes

NI =
mkBTLxLy

2π!2

.
n̄z−1#

nz=0

( ∞

ln 2+φnz

dt
1

et−φnz − 1
−

∞#

nz=n̄z

ln
,
1− eφnz

-/
. (3.40)

We note that each integral in the first sum has to be calculated for fixed values of Λ, T

and nz. This means that the function φnz in the integral behaves as a constant. Thus one

can change the variable in t′ = t− φnz and write

NI =
mkBTLxLy

2π!2

.
n̄z−1#

nz=0

( ∞

ln 2
dt′

1

et′ − 1
−

∞#

nz=n̄z

ln
,
1− eφnz

-/
. (3.41)

But now the integral does not depend on nz, and it can be calculated by substitution of
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variable, x = et
′
:

( ∞

ln 2
dt′

1

et′ − 1
=

( ∞

2
dx

1

x(x− 1)
=

5
ln

x− 1

x

6∞

2

= ln 2. (3.42)

Hence, the first sum in NI is just n̄z times the above integral, and

NI =
mkBTLxLy

2π!2

.
n̄z ln 2−

∞#

nz=n̄z

ln
,
1− eφnz

-/
, (3.43)

or

NI =
LxLy

λ2
dB

.
n̄z ln 2−

∞#

nz=n̄z

ln
,
1− eφnz

-/
. (3.44)

A different way to write the prefactor is

NI =
kBTLxLy

2πl2ref!ωref

.
n̄z ln 2−

∞#

nz=n̄z

ln
,
1− eφnz

-/
. (3.45)

One can also define the 2D phase-space density of incoherent atoms as DI = λ2
dBNI/LxLy

so that

DI = n̄z ln 2−
∞#

nz=n̄z

ln
,
1− eφnz

-
. (3.46)

These quantities can be calculated for each T and Λ. Note also that φnz and n̄z can be

expressed as follows:

φnz(T,Λ) =

&
µ̃

!ωref
− nz

Λ

'
!ωref

kBT

=

&
(4.64µm−2)!

mωref
− nz

Λ

'
!ωref

kBT

=
,
(4.64µm−2)ℓ2ref −

nz

Λ

- !ωref

kBT
, (3.47)

with ℓref =
!
!/mωref , and

n̄z(T,Λ) = ⌈
&

µ̃

!ωref
+

kBT

!ωref
ln 2

'
Λ⌉

= ⌈
&
(4.64µm−2)!2

m!ωref
+

kBT

!ωref
ln 2

'
Λ⌉

= ⌈
&
(4.64µm−2)ℓ2ref +

kBT

!ωref
ln 2

'
Λ⌉ . (3.48)

With the reference frequency ωref we can define a reference temperature Tref = !ωref/kB

and introduce a relative temperature T ′ = T/Tref . Also, let us call a and b the dimension-
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less constants (4.64µm−2)ℓ2ref and LxLy/(2πl
2
ref), respectively. Thus

φnz(T
′,Λ) =

,
a− nz

Λ

- 1

T ′ (3.49)

n̄z(T
′,Λ) = ⌈

0
a+ T ′ ln 2

1
Λ⌉ (3.50)

and so finally

NI(T
′,Λ) = bT ′

.
n̄z ln 2−

∞#

nz=n̄z

ln
,
1− eφnz

-/
. (3.51)

For the trapping configuration prescribed within Section 3.1.4, we can calculate the rele-

vant quantities, yielding

ℓref =

"
!

mωref
= 0.1592× 10−6 m = 0.1592 µm, (3.52a)

Tref =
!ωref

kB
= 22.03× 10−8 K = 220.3 nK, (3.52b)

a =
g2Dn2D

!ωref
= (4.64µm−2)ℓ2ref = 0.1176, (3.52c)

b =
LxLy

2πl2ref
= 7159 . (3.52d)

It is also useful to introduce the following constants:

cx =
πℓref
Lx

= 1.316× 10−2 and cx =
πℓref
Ly

= 1.667× 10−2 . (3.53)

The analytic result Eq. (3.51) could be compared with the brute force numerical sum-

mation Eq. (3.25). If we use the cutoff energy as in Eq. (3.17) and the constants of

Eq. (3.52) and Eq. (3.53), we can express the latter as

NI =

∞#

nz=0

#

nx,ny

′
>
exp

D
c2xn

2
x + c2yn

2
y + nz/Λ− a

T ′

E
− 1

?−1

, (3.54)

where the second sum includes all values of nx and ny such that

c2xn
2
x + c2yn

2
y + nz/Λ− a > T ′ ln 2 , (3.55)

and the normalised temperature T ′ = T/Tref has been introduced for simplified notation.

Note that, by replacing the inequality with an equality, the mean occupation number

becomes 1, which is consistent with the choice of the cutoff energy.

The analytic result of Eq. (3.51) can also be compared with the results that one obtains

when the whole spectrum is dense on the scale of kBT . In this limit the sum over nz,
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together with the ones over nx and ny, can be converted into an integral on the energy,

as done in Eq. (4.18). The condition that must be satisfied is kBT ≫ !ωz or ΛT ′ ≫ 1. In

this case one can write

NI =
mLxLy

2π!3ωz

( ∞

Ẽcut

dẼ
Ẽ

exp[(Ẽ − µ̃)/kBT ]− 1

=
mLxLyΛk

2
BT

2

2π!3ωref

( ∞

t̄
dt

t
et

z − 1

= bΛT ′2
( ∞

t̄
dt

t
et

z − 1
(3.56)

with

t̄ =
Ẽcut

kBT
=

µ̃

kBT
+ ln 2 =

a

T ′ + ln 2 (3.57)

and the fugacity

z = exp

&
µ̃

kBT

'
= exp

, a

T ′

-
. (3.58)

One can then write the same expression in this way:

NI = bΛT ′2
( ∞

a
T ′+ln 2

dt
t

et−a/T ′ − 1
(3.59)

or

NI = bΛT ′2
( ∞

ln 2
dt

t+ a/T ′

et − 1
. (3.60)

This must coincide with the limit ΛT ′ ≫ 1 of expression Eq. (3.51), which means that

lim
ΛT ′→∞

D
n̄z ln 2−

∞#

nz=n̄z

ln
,
1− eφnz

-E
= ΛT ′

( ∞

ln 2
dt

t+ a/T ′

et − 1
. (3.61)

In either case, the two results must approach each other. An alternative way to write

Eq. (3.60) is the following

NI
bΛT ′ = T ′

&( ∞

ln 2
dt

t

et − 1
+

a

T ′

( ∞

ln 2
dt

1

et − 1

'
= a ln 2 + T ′

( ∞

ln 2
dt

t

et − 1
. (3.62)

The last integral is just a number,

Υ =

( ∞

ln 2
dt

t

et − 1
= 1.0592 (3.63)

so that

NI = bΛT ′(a ln 2 + ΥT ′) (3.64)
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and the limit Eq. (3.61) can be expressed as

lim
ΛT ′→∞

D
n̄z ln 2−

∞#

nz=n̄z

ln
,
1− eφnz

-E
= Λ(a ln 2 + ΥT ′) . (3.65)

The difference between the two obtained results for NI can be appreciated by plotting the

function

Nf (T
′) = NI/(bΛT

′) (3.66)

as in Fig. 3.5. Here, the limit of a dense spectrum is represented by a black dashed straight

line: a ln 2 + ΥT ′, and all curves obtained with the discrete spectrum collapse onto this

line for large Λ. The figure shows the results for each considered dimensionality in this

chapter as given by Λ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50}, from top to bottom.

With the same method one can also calculate the incoherent atom density in the SPGPE.
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Figure 3.5: The function Nf given by Eq. (3.66) is plotted for each considered value of dimension-
ality to show the difference in value for the number of atoms between the discrete spectrum and
dense spectrum formulations. The dense spectrum result (ΛT ′ → ∞) is plotted as a dashed black
line.

The starting point is the basis of eigenfunctions for a particle in the same hybrid trap,

which can be written as

Ψn(x, y, z) = c sin

&
nxπx

Lx

'
sin

&
nyπy

Ly

'
Hnz(z/ℓz) exp(−z2/2ℓ2z) , (3.67)
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where c is a normalisation constant, fixing the norm of each state to 1, and Hnz denotes

a Hermite polynomial. The harmonic oscillator length is ℓz =
!
!/mωz =

√
Λ ℓref . The

meaning of the quantum numbers n = (nx, ny, nz) is the same as in Eq. (A.27). Each state

is populated according to the Bose-Einstein distribution Eq. (A.28). Hence the density

associated to the incoherent atoms above the cutoff energy, treated as an ideal gas, can

be estimated as

nI(x, y, z) =
#

Ẽn>!̃cut

|Ψn(x, y, z)|2

exp[(Ẽn − µ̃)/kBT ]− 1
, (3.68)

where all quantities entering this expression are the same as in Eq. (3.25). Ignoring

interference effects in the sum of wavefunctions is consistent with the assumption that the

states above the cutoff energy are incoherent and the effects of the relative phase vanish

after configuration averages. The spatial integral of this density gives the incoherent atom

number NI . We can also assume that the spectrum is dense in nx and ny, such that

all sin2 functions sum up to a constant areal density along x and y, except for negligible

boundary effects. The sum over nx and ny can be replaced with an integral over the

energy, introducing the 2D density of state as in Eq. (3.28):

nI(z) =
m

2π!2
∞#

nz=0

|ψnz(z)|2
( ∞

Emin

dExy
1

exp[(Exy + nz!ωz − µ̃)/kBT ]− 1
, (3.69)

where the wavefunction

ψnz(z) = cnzHnz(z/ℓz) exp(−z2/2ℓ2z) (3.70)

depends on z only and has norm 1 if

cnz = [
√
π 2nznz! ℓz]

−1/2 . (3.71)

Following the same procedure used after Eq. (3.28), one can derive the expression

nI(z) =
mkBT

2π!2

.
n̄z−1#

nz=0

|ψnz(z)|2
( ∞

t̄
dt

1
et

z(nz)
− 1

−
∞#

nz=n̄z

|ψnz(z)|2 ln (1− z(nz))

/
.

(3.72)

As before, we can also use the expressions of the chemical potential and the cutoff energy

of our SPGPE equation and write

nI(z) =
mkBT

2π!2

.
n̄z−1#

nz=0

|ψnz(z)|2 ln 2−
∞#

nz=n̄z

|ψnz(z)|2 ln
,
1− eφnz

-/
, (3.73)
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or

nI(z) =
bT ′

LxLy

.
n̄z−1#

nz=0

|ψnz(z)|2 ln 2−
∞#

nz=n̄z

|ψnz(z)|2 ln
,
1− eφnz

-/
, (3.74)

with

φnz =
,
a− nz

Λ

- 1

T ′ and n̄z = ⌈
0
a+ T ′ ln 2

1
Λ⌉ . (3.75)

Note that the Hermite polynomial vanishes in z = 0 if nz is an odd integer. This implies

that the incoherent density in the z = 0 plane is

nI(0) =
bT ′

LxLy

.
n̄z−1#

nz=0

c2nz
(Hnz(0))

2 ln 2−
∞#

nz=n̄z

c2nz
(Hnz(0))

2 ln
,
1− eφnz

-/
(3.76)

where the sums give non-zero contributions only for even values of nz. Hence

nI(0) =
bT ′

√
π LxLyℓz

.
n̄z−1#

nz=0

(Hnz(0))
2 ln 2

2nznz!
−

∞#

nz=n̄z

(Hnz(0))
2

2nznz!
ln

,
1− eφnz

-/
(3.77)

or

nI(0) =
bT ′

√
πΛ LxLyℓref

.
n̄z−1#

nz=0

(Hnz(0))
2 ln 2

2nznz!
−

∞#

nz=n̄z

(Hnz(0))
2

2nznz!
ln

,
1− eφnz

-/
. (3.78)

This quantity is plotted as a function of normalised temperature for a number of different

dimensionalities, as indicated in Fig. 3.6. It is worth noticing here, that the dependence

on Λ is very weak with the largest deviation exhibited for the lowest dimensionality we

consider Λ = 1 corresponding to the 2D limit. Now, considering the full transverse profile

for the thermal atoms, we can see a clearer deviation in the density profiles of the above-

cutoff atoms. Fig. 3.8 shows the incoherent density nI(z) as a function of z/ℓz for T
′ = 0.45

and each value of Λ ∈ [1, 50] that we consider, from the narrower to the broader. The values

at z = 0 are the same as given in the previous plot. We also highlight that the incoherent

atom number NI can be roughly estimated by replacing each curve with a rectangle of

height nI(0) and width of the order of z1/2/ℓz where z1/2 is where the density is half

its central value. The area of such a rectangle, multiplied by two (the density extends

symmetrically on the left of z = 0) and by the volume LxLyℓz, reasonably approximates

the exact result Eq. (3.51).

It is worth highlighting that the above-cutoff density nI must not be confused with

the “thermal” (or non-condensate) gas density as usually defined in 3D Bose gases when

a condensate is present. The non-condensate density along the transverse direction nnc(z)

can be estimated as the total density n(z) minus the density n0(z) of the atoms in the

condensate i.e., the eigenstate with the largest eigenvalue in the Penrose-Onsager diago-
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Figure 3.6: Central transverse density of the thermal above-cutoff atoms in the I-field for various
values of the dimensionality parameter Λ (as indicated by the legend) plotted as a function of
normalised temperature T ′.

nalisation of the one-body density matrix, as later discussed in Section 4.5.1. We stress

that the non-condensate density contains contributions from above-cutoff atoms such that

nnc(z) = nC(z) + nI(z)− n0(z). (3.79)

Such a thermal density takes contributions from both the C-field below and the incoherent

states above the cutoff. Two examples are shown in Fig. 3.7 at temperatures close to the

phase transition for two different values of Λ.

3.2.1 Density normalisation across dimensionality through tuning of the

chemical Potential

Through the SPGPE, control of the system is facilitated by a careful choice of two pa-

rameters, namely the chemical potential µ and the temperature T . In defining values for

these quantities, we can design specific conditions for the thermal cloud. This incoherent

cloud then exchanges particles and energy with the condensed field, corresponding to a

specific equilibration configuration for those conditions. Whilst equilibration is stochastic

in nature, a careful choice in the chemical potential can be used to ensure an approximate

atom number in our equilibrated system.
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Figure 3.7: Total (n), condensate (n0) and non-condensate (nnc = n − n0) density profiles along
the transverse direction plotted in blue, red and yellow respectively for a quasi-2D (a) (Λ = 10)
and 3D (b) (Λ = 50) trapping geometry at temperature T=200nK, for which T/Tc = 0.83 and
T/Tc = 0.75 respectively.

Our simulations evolve from the initial condition ψ(r) = 0, with a random realisation

of the initial noisy field η(r). This is akin to an input condition where all atoms possess

initial energy larger than the cutoff energy $cut. These atoms then enter the coherent region

at a rate governed by γ, which describes the collisional rate between atoms, until the gas

saturates at thermal equilibrium. Our desire is to ensure an approximately equivalent total

atomic density across various dimensionalities. To estimate the value of µ to generate N

atoms in our equilibrated coherent system at a dimensionality Λ, we apply the Thomas

Fermi approximation. Assuming we are at equilibrium and the number of atoms has

saturated, we can neglect the dissipation and noise terms and write Eq. (3.21) as

i!
∂Ψ

∂t
= P

F5
−!2∇2

2m
+ V + g3D|Ψ |2 − µ

6
Ψ

G
. (3.80)

Since we shall be emulating the experimental configuration of Ville et al [171] for our

reference case of Λ = 1, we begin by considering this 2D limit and make the ansatz that

Ψ(r, t) = ψ(x, y, t)φ(z) (3.81)
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Figure 3.8: Transverse density profiles of above-cutoff atoms for various values of dimensionality
taken at the normalised temperature T ′ = 0.45. Density profiles are symmetric about z = 0, with
the symmetric half omitted for visual clarity.

where φ(z) is the ground state solution which is known to be of the form [40]

φ(z) =
e
− z2

2ℓ2z

(πℓ2z)
1/4

. (3.82)

where, as used previously, the characteristic trapping length ℓz corresponds to the trans-

verse trapping frequency ωz. Substituting Eq. (3.82) into Eq. (3.80), multiplying on the

left by the conjugate φ∗(z) and integrating over all z gives

i!
( ∞

−∞
dz |φ|2∂ψ

∂t
= P

F( ∞

−∞
dz φ∗

5
−!2∇2

2m
+ V + g3D|ψ|2 − µ

6
ψφ

G
. (3.83)

Noting that the only constituent of our external potential which acts over the transverse

direction is that of our harmonic trap, and since
%∞
−∞ dz |φ|2 = 1,

%∞
−∞ dz |φ|4 = 1/

√
2πℓz,

this can be simplified down to

i!
∂ψ

∂t
= P

F5
−!2∇2

2m
+

!ωz

2
+

g3D√
2πℓz

|ψ|2 − µ

6
ψ

G
. (3.84)

The projector is only important when considering numerics and thus we ignore it here for

76



Chapter 3. Finite temperature stochastic Gross-Pitaevskii methods

simplicity. The stationary solution of the coherent modes in the Thomas-Fermi limit is

then

µψ =

5
!ωz

2
+

g3D√
2πℓz

|ψ|2
6
ψ. (3.85)

Substituting |ψ|2 = N
LxLy

as the 2-dimensional density, we can estimate µ to be

µ =
!ωz

2
+

g3DN√
2πℓzLxLy

(3.86)

where we recall that Lx, Ly are the respective box side lengths in x and y. Now since

we know the density value of the reference 2D system we wish to emulate, as well as the

interaction strength we can substitute µ2D = g2Dn2D = g3DN/(
√
2πℓzLxLy) and therefore

have a simplistic method to normalise atomic density across different values of ωz and

thus dimensionality.

3.3 Chapter conclusions

In this chapter we introduced the finite temperature dynamical theory offered by the

SPGPE. We outlined its derivation and discussed the approximations made that give rise

to the simple growth SPGPE. We then discussed the implications and implementation

details of a numerical projection operator to cast out incoherent modes. We went on to

introduce the hybrid trapping geometry employed for the remainder of this thesis and

derived expressions for the density contributions from above-cutoff modes in this given

configuration. Lastly, we motivated a simple choice for a chemical potential to emulate

the 2D experimental conditions of Ville et al [26] in such a way that we can maintain an

equivalent central density across dimensionality by varying the parameter Λ.

With this foundation, we can now utilise the SPGPE formalism to explore the physics

present in the dimensionality crossover from two to three dimensions. By varying the

transverse harmonic trapping strength, the following chapter will explore the effects of

dimensionality on the phase transition of the trapped Bose gas at equilibrium.

77



Chapter 4

Equilibrium analysis of the

dimensionally reduced Bose gas

from two to three dimensions

In this chapter we introduce and investigate the dimensionality crossover of the planar

trapped Bose gas which is harmonically confined along a singular direction. This work

documents in greater detail the study described in Keepfer et al, “Phase transition dimen-

sionality crossover from two to three dimensions in a trapped ultracold atomic Bose gas”

(2022), accepted for publication in Phys. Rev. Research [192].

4.1 The role of dimensionality in the characterisation of the

critical transition point

It is well documented that in lower-dimensional finite temperature systems with short-

range interactions, the spontaneous breaking of a continuous symmetry is precluded. This

is commonly referred to as the Mermin-Hohenberg-Wagner theorem [24, 25]. More plainly,

in such lower-dimensional systems, long-range coherence remains elusive due to the strong

thermal fluctuations inherent to the system which acts to destroy any long-range order.

However, for the case of the dilute Bose gas with repulsive interactions, a topological

ordering may be induced through the binding of vortex pairs [193, 194] below a critical

transition temperature. We also know that in 3D the macroscopic occupation of the

lowest energy allows the formation of a Bose-Einstein condensate [1, 2, 195], which in

turn, occurs at another distinct critical temperature. This dichotomy between phase

transition mechanisms at the dimensional extremes presents an open question on the

phase transition mechanism in quasi-2D systems. That is, as we apply harmonic trapping

with increasing strength along the transverse direction, there must be a crossover region
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in which we shift from the superfluidity as a consequence of BEC, to the superfluidity as

a consequence of BKT topological ordering. Whilst dimensionality crossovers have been

previously considered both theoretically [41, 164, 196–203] and experimentally [5, 42, 46,

204–207], relevant questions on the effects of dimensionality between the BKT and BEC

phase transitions of a dilute Bose gas within experimentally viable geometries remain open.

We highlight that this specific crossover has previously been investigated as a function of

interactions [207], but in our work these remain fixed.

4.2 Equilibration physics inside the hybrid trapping Geom-

etry

Before discussing the equilibrium properties, we first visualise in Fig. 4.1 a few snapshots

of single SPGPE trajectories for three different values of Λ during the preparatory stage

of the dynamical equilibration process we employ. Projected density slices along the axial

planes reveal a homogeneous profile along the xy plane. Along the other planes we have

a fusion of homogenous and harmonic density profiles. In addition to the density slices,

the integrated density along each individual axis is shown, revealing a clear homogeneous

profile along the planar directions and a Thomas-Fermi like solution along the harmonically

trapped transverse direction. Lastly, the isosurface renderings reveal the global change in

system topology through the dimensionality crossover as we modify Λ. In each case, the

system evolves starting from a zero-field condition and a snapshot is taken at some instant

during the equilibration dynamics. In such a dynamical process, one may easily observe

quantum vortex structures forming spontaneously during the growth [151, 187, 208–210]

as a consequence of symmetry breaking in the region of critical fluctuations. Whilst

we employ an instantaneous quench, a careful control of quench rate can be used to

effectively control vortex number through the Kibble-Zurek mechanism [69, 211, 212].

The figure shows that, by increasing Λ, vortices change from point-like to filament-like

defects, clearly signposting a transition in dimensionality, which roughly occurs when the

vortex core size (i.e., the healing length) is of the same order of the transverse size of the

atomic cloud. This is further evidenced when we consider the full relationship between

the healing length ξ and transverse width ℓz as plotted in Fig. 4.2. Here we see a rapid

change in dimensionality between 1 ≤ Λ ≤ 10, which slows with increasing Λ. As such,

we expect the majority of the dimensional shift to occur within this range.
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(a) Λ=1

(b) Λ=20 

(c) Λ=50

Figure 4.1: Examples of isosurface rendering (green) of C-field density, |ΨC |2, during a quench from
zero-field conditions to equilibrium for Λ = 1, 20, 50 as labelled by (a), (b) and (c) respectively.
The temperature of the gas in all cases is 20nK, which is well below the transition temperature
where the system is superfluid. In red, we plot an isosurface of high velocity regions, indicating
vortex structures. In the Λ = 50 case, integrated line density profiles are overlayed for each axis.
The image at the bottom is the column density, i.e., the density integrated along z, for the case of
Λ = 50. The images on the left and right are the column densities in the planar directions.

4.3 Normalising atomic density and Bogoliubov sound speed

across dimensionality and temperature

As previously outlined in Section 3.1.4, our aim is to compare equilibrium configurations

with similar average density but different dimensionality, as this facilitates the most di-

rect way to compare different regimes across the dimensionality crossover. However, the

SPGPE does not allow one to directly fix the total atom number N = NC + NI as an

input without the postulation of an additional term as has been previously investigated

[131] in 1D. One instead has to impose upon the thermal reservoir, and consequently the

Bose gas, an input chemical potential which is carefully chosen to ensure consistent atomic

densities. A simple choice, as motivated in Section 3.2.1, corresponds to use µ according

to

µ = µ2D +
!ωz

2
= µ2D +

!ωref

2Λ
, (4.1)

where µ2D is a constant, independent of Λ. When Λ increases, this choice of µ implies

an increase of the number of atoms in the trap: typical C-field atom numbers for a given
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Figure 4.2: Relationship between the ratio of the healing length ξ = !/
!
2mgn(0) and the trans-

verse width of the gas as a function of dimensionality. We use the top x-axis to additionally show
the relationship between the chemical potential, from the protocol as defined by Eq. (4.1). Black
points correspond to the specific values of Λ we consider across this chapter with a blue dotted
line to guide the eye.

ensemble range between NC ∼ 103 for Λ = 1 to NC ∼ 106 for Λ = 50. However, as

we will see later, the central density remains of the same order in the whole range of Λ,

decreasing by about 30% only and approaching the constant value µ/g for T = 0 and large

Λ. The results presented in the next sections are obtained by using the chemical potential

of Eq. (4.1) with µ2D = (4.64µm−2)!2/m, which ensures that the density and the chemical

potential for Λ = 1 reduce to the experimental values of Ville et al [26]. We we will also

discuss some results obtained with a chemical potential having a different dependence

on Λ, in order to show that main qualitative features of the dimensional crossover remain

unchanged. One such way to normalise results across dimensionalities would be to consider

normalising the zero temperature second sound speed across the dimensional extremes.

Thus, the goal is to find a proper way to realise the 2D-3D dimensional crossover in the

hybrid trap by keeping this key property of the gas almost constant. For this purpose, let

us start from the Gross-Pitaevskii equation, ignoring boundary effects in the horizontal
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xy-plane. Then the order parameter only depends on the vertical coordinate z and we can

write

Ψ(z) =

2
n2D

ℓz
f
0
z′
1

(4.2)

where f is a real function and

z′ = z/ℓz,%
dz′f2 (z′) = 1,

n2D =
%
dzn(z) = N

LxLy
.

(4.3)

Then the 3D GP equation reduces to the one-dimensional equation

&
−1

2

d2

dz′2
+

1

2
z′2 + 4πasℓzn2Df

2
0
z′
1'

f
0
z′
1
=

µ

!ωz
f
0
z′
1

(4.4)

Now, in the 2D mean-field limit, when asℓzn2D ≪ 1, the solution of the GP equation

approaches a Gaussian

f
0
z′
1
=

1

π1/4
e−z′2/2 (4.5)

and we note that the central density of the gas, n(0) is related to the effective 2D density

by

n(0) =
n2D

ℓz
f2(0) =

n2D√
πℓz

=
N√

πLxLyℓz
. (4.6)

The sound speed can be obtained from the definition mc2 = n2D∂µ/∂n2D which gives

mc2 = g2Dn2D =

2
1

2
g3Dn(0) (4.7)

Conversely, in the Thomas-Fermi limit, when asℓzn2D ≫ 1, the solution of the GP equation

approaches the Thomas-Fermi solution, where the density is given by

n(z) = n(0)

&
1− z2

R2
z

'
(4.8)

where Rz is the Thomas-Fermi radius which obeys the condition n(z) = n(0)
,
1− z2

R2
z

-

with

µ = g3Dn(0) =

&
3π!2ωzasn2D√

2m

'2/3

=

.
3π!2ωzasN√

2mLxLy

/2/3

(4.9)

The sound speed can again be obtained from the definition mc2 = n2D∂µ/∂n2D which in

this instance gives

mc2 =
2

3
µ =

2

3
g3Dn(0). (4.10)
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In our SPGPE simulations, the quantity µ̃ = g2Dn2D =
0
4.64µm−2

1
!2/m is a constant.

This implies that, in the 2D limit, we have

c =

2
µ̃

m
=

0
2.154µm−1

1
!/m (4.11)

whilst in the 3D limit we have

c =

2
2µ

3m
. (4.12)

However, for large Λ, the zero-point energy becomes negligible and one can replace µ with

µ̃, thus obtaining

c =

2
2

3

2
µ̃

m
=

2
2

3

0
2.154µm−1

1
!/m (4.13)

which is about 20% smaller than in the 2D limit. Now, the central density in the 2D limit

is

n(0) =
n2D√
πℓz

=
µ̃

g2D
√
πℓz

=
√
2

µ̃

g3D
, (4.14)

whereas in the 3D limit we have

n(0) =
µ̃

g3D
, (4.15)

which is a factor of
√
2 smaller. Thus in order to obtain almost the same speed of sound

at zero temperature for any Λ the input chemical potential µ̃ should vary with Λ, instead

of being a constant; in particular, it should grow from the reference value at Λ = 1 to

a value a factor of 3/2 larger for Λ = 50. For simplicity we use a linear interpolation

between these two extremes such that

µ =

&
1 +

Λ− 1

2(50− 1)

'
µ2D +

!ωref

2Λ
(4.16)

For most of the work in this section focusing on equilibrium properties, we adopt the

former definition of the chemical potential specified by Eq. (4.1) for simplicity and will

specify any instances of the latter protocol in this chapter. However, in Chapter 5 which

discusses sound speed, we utilise the secondary protocol and adopt Eq. (4.16) globally

across that chapter.

4.4 Limiting regimes

To understand the crossover behaviour, we first focus on the limiting regimes. That is, the

characterisation of the thermal transition point in the well-documented 2D and 3D limits.

In the limit of 2D, thermal fluctuations at any temperature are strong enough to preclude

long-range coherence in the phase of the system. As such, spontaneous symmetry breaking

cannot occur and the formation of a true condensate is not feasible, in accordance with the
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Mermin-Hohenberg-Wagner theorem [24, 25]. Specifically, this theorem precludes the ex-

istence of a condensate for a system with short range interactions at non-zero temperature

for dimensions 2 or fewer. Nevertheless, the phenomenon of quasi-long-range order in low-

dimensional atomic gases with repulsive interactions leads to a decrease in the first-order

correlation function. As such, a topological phase transition can be induced below some

critical temperature, TBKT. Formally, this is known as the Berezinskii-Kosterlitz-Thouless

(BKT) superfluid phase transition, first introduced in the seminal works of Kosterlitz and

Thouless [194]. This mechanism permits the onset of superfluidity in 2D Bose gases de-

spite the preclusion of condensation in this limit. The BKT superfluid transition [193, 194]

arises from the binding of vortex pairs and occurs at a critical temperature dependent on

the superfluid density of the system. Conversely, in 3D, a phase transition occurs via the

macroscopic occupation of the lowest energy level, or as we recognise it, the Bose-Einstein

condensation [1, 2, 195]. The following subsections will explore these two limiting regimes

for our trapping geometry in greater detail.

4.4.1 The BEC transition

In order to probe the transition, we must first elucidate the temperature at which a

transition will occur for our given system. We begin by writing the number of atoms in

the system as

N = N0 +

( ∞

0
d$ g($)fBE($) (4.17)

Then, as done for the derivation of the density of states in Eq. (A.36), we assume here

that kBT is much larger than the level spacing, including the harmonic oscillator energy

!ωz. Then Eq. (A.32) becomes

N = N0 +
mLxLy

2π!3ωz

( ∞

0
dẼ

Ẽ

exp[(Ẽ − µ̃)/kBT ]− 1
. (4.18)

Let us define

t =
Ẽ

kBT
, z = eµ̃/kBT (4.19)

so that

N −N0 =
2πLxLyℓ

2
z

λ4
dB

( ∞

0
dt

t
et

z − 1
. (4.20)

The integral is a standard Bose-Einstein integral of order 2. Using Eq. (1.31) we can then

write

N −N0 =
2πLxLyℓ

2
z

λ4
dB

Li2(z) , (4.21)
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where

Li2(z) = −
( z

0
dt

ln(1− t)

t
. (4.22)

The occupation of the lowest state, N0, becomes macroscopic (i.e, of order N) only when

µ̃ approaches 0 from below, which corresponds to z = exp(µ̃/kBT ) → 1 under the as-

sumption that the total number of particles can be accommodated in excited states. The

value of Li2(z) for z = 1 is

Li2(1) = π2/6 (4.23)

and the relation between the total particle number and temperature at this critical point,

where N0 vanishes, becomes

N =
π3LxLyℓ

2
z

3ζλ4
dB

, (4.24)

or

N =
πLxLymk2BT

2

12ωz!3
. (4.25)

This can be used to define a critical temperature

TBEC =

"
12!3ωzN

πk2BmLxLy
(4.26)

for Bose-Einstein condensation for a given total number of atoms N . It is worth reiterating

here that in a true 2D system corresponding to the limit ωz → ∞, the formation of a

condensate is prohibited, corresponding to an infinite temperature transition. However,

due to the phenomenon of transverse condensation as discussed in Section 1.1.3, it is

possible to achieve a macroscopic occupation of the lowest modes and hence condensation

even in a strongly confined quasi-2D system.

4.4.2 The BKT transition

The theory of Berezinskii, Kosterlitz and Thouless [194, 213] stipulates that a topologically-

induced phase transition may occur in the 2D Bose gas, below some critical temperature.

At high temperatures, above the transition, there is a proliferation of free vortices. This

proliferation of free vortices prevents any phase rigidity from appearing in the system lead-

ing to a fluctuating phase and vanishingly small correlation lengths. As the temperature

is lowered, these vortices instead become bound to vortex/antivortex pairs, bearing little

influence on the coherence properties of the gas and allowing the phase to stabilise and

become coherent over a larger correlation length. Let us first consider the energy associ-

ated with a vortex/antivortex pair; it can be shown [161, 214] that the kinetic energy of
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a pair separated by a distance l is given by the result

E2V
kin ≈ 2π

!2n
m

log

&
l

ξ

'
. (4.27)

It is also fairly simple, upon the assumption of a step-like density profile at the vortex

core, to derive the kinetic energy associated with a single vortex. This is given by the

result

EV
kin = π

!2n
m

log

&
R

ξ

'
, (4.28)

for a circular system of size R. The difference here is startling, as although appearing

similar in form, the kinetic energy for an isolated vortex diverges with the system size. In

addition, an isolated central vortex causes the bulk density to change due to the change

in area from πR2 to π(R2 − ξ2) for the same number of particles. This causes a shift in

the interaction energy from the quiescent state given by ∆EV
int = π!2n/4m. In the same

vein, it simply follows that this shift in the interaction strength of the dipole pair is just

twice the shift for the isolated vortex. Now, it becomes possible to define the probability

of a pair separated by distance l from the relation

P2V (l) = e
− 2∆EV

int+E2V
kin(l)

kBT ≈ z2v (ξ/l)
Ds (4.29)

where we have introduced the vortex fugacity zv = exp(−∆EV
int/kBT ) with the superfluid

phase space density Ds. The vortex fugacity can be approximated as zv ≈ exp(−Ds/4) for

a step-like density profile within the vortex core. One can now define the average distance

between a vortex pair as the quantity 〈l2〉, which is reported by Kosterlitz and Thouless

[194] to be the expression

〈l2〉 = ξ2
Ds − 2

Ds − 4
. (4.30)

We now see the famous prediction of the universal superfluid jump and corresponding

BKT phase transition. The relation is universal as it is, perhaps surprisingly, independent

of the interaction strength. In fact, from Eq. (4.30), we can see that for Ds = 4 the

mean separation diverges. Additionally, we can see that for Ds < 4, we are in the non-

degenerate case and above the topologically induced phase transition. In this region, free

vortices proliferate and preclude the emergence of a stiff phase and hence superfluidity is

not possible. Whereas, for Ds > 4, we have a degenerate system where vortices are bound

to pairs whose average separation decreases with increasing phase space density. This

stabilisation in the phase from the topological ordering of dipole pairs enables superfluid

behaviour below the transition. In order to further understand the nature of the transition,

it becomes useful to find an expression in terms of the critical temperature at which it

occurs.
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Previous works [47, 215] have developed a thermodynamic theory by determining the

equation of state for an interacting planar 2D Bose gas, leading to the critical expression

in the thermodynamic limit described by

µ2D

kBT

HHHH
BKT

≈ mg2D
π!2

ln

&
Cµ

g̃2D

'
, (4.31)

where µ2D is the effective chemical potential for the 2D system, as in Eq. (4.1). The

quantity g̃2D = (m/!2) g2D =
√
8πas/lref = 0.16 is a dimensionless interaction strength

in the 2D limit chosen to once again match the value used by Ville et al [26]. Numerical

quantum Monte Carlo simulations [216, 217] have recovered the value Cµ = 13.2 for the

case of a weakly interacting Bose gas.

T [nK]
0 100 200 300

n
v

0.0

0.5

1.0

1.5

(a)

(b)

(c)
S

¡ ¼

0

¼

S

¡ ¼

0

¼

S

¡ ¼

0

¼

x [¹m]
-20 -10 0 10 20

y
[¹
m
]

-10
0

10

x [¹m]
-20 -10 0 10 20

y
[¹
m
]

-10
0

10

x [¹m]
-20 -10 0 10 20

y
[¹
m
]

-10
0

10

Figure 4.3: Vortex density as a function of temperature for the 2D case Λ = 1. Black line corre-
sponds to average value with errorbars signifying one standard deviation. Additional red, blue and
magenta points correspond to subplots (a), (b) and (c) at temperatures T = 80nK, 120nK, 200nK
respectively. In each subplot we show a phase profile of a single stochastic trajectory along the
central z = 0 plane, superimposing the position of positive and negative vortices as red and blue
circles respectively. A dotted green vertical line has been added to demarcate the analytic BKT
temperature for Λ = 1, as given by Eq. (4.31).

A measure of the degeneracy one may consider is the vortex density which can be
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defined for our planar system in the Λ = 1 case to be

nv =
Nv

LxLy
, (4.32)

where Nv is the number of vortices identified in the central z = 0 plane. Across the BKT

transition, we expect this value to saturate [161]. In fact, this is exactly the behaviour

observed in Fig. 4.3. Although vortices may exist at temperatures below the BKT tran-

sition, they will eventually annihilate. Thus, we observe that there is a steep increase in

the number of vortices close to the BKT transition temperature, in close agreement with

previous work [28]. This can be seen by the phase profiles in which Fig. 4.3(a) contains

few vortices, Fig. 4.3(b) contains a significant number of vortices and Fig. 4.3(c) displays

a near-full saturation of vortices within the system. Vortex positions in these plots are

detected with sub-resolution precision using an interpolating plaquette method which cal-

culates the phase integral around each 4-point plaquette on a cartesian grid. We only

apply this method on the central z = 0 plane for the 2D case Λ = 1 where vortices are

point-like.

4.5 Dimensional crossover

Having investigated the dimensional extremes, we now focus our attention towards the

dimensional crossover. We first perform a survey, as shown in Table 4.1, of modern ex-

perimental trapping protocols that have defined themselves as investigating either the 2D

or quasi-2D regime. Some of these experimental realisations use a trapping similar to the

hybridised planar-harmonic trap we employ and others explore avenues such as full har-

monic traps or even lattices. The large range of trapping strengths exhibited here indicate

a clear need for a systematic analysis of the effects of dimensionality and temperature on

the trapped dilute Bose gas. For the scope of our work, which considers Λ ∈ [1, 50], we

expect a clear transition from 2D behaviour at Λ = 1 where one would expect dynamics

to be frozen along the transverse direction and a Thomas-Fermi transverse profile towards

3D behaviour with a Gaussian transverse profile at the 3D limit approximated here by

Λ = 50. This is precisely what we see in Fig. 4.4(a), where for Λ ≤ 5, Gaussian profiles

are indistinguishable from one another, as the gas is subject to very strong trapping and

unable to occupy high transverse modes. At Λ = 10 we see a minor deviation from this

Gaussian profile as atoms are promoted into the transverse modes of the system and at

Λ = 50 we see a full Thomas-Fermi solution, as evidenced by the inset plot which agrees

excellently with the Thomas-Fermi prediction.
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Laboratory ωz/(2π) Λ Refs. Year

Cambridge1 (UK) 5500-4100 0.84-1.12 [207, 218] 2015-2021

Paris2 (France) 4594-350 1-13.13 [5, 26, 46, 219] 2010-2018

Chicago3 (USA) 1900 2.42 [220] 2011

Maryland4 (USA) 1000 4.59 [45] 2009

Seoul5 (Korea) 350 13.13 [221] 2017

Massachusetts6 (USA) 250 18.38 [222] 2021

Innsbruck7 (Austria) 133 34.54 [133] 2021

Queensland8 (Australia) 108 42.54 [223] 2019

Monash9 (Australia) 100 45.94 [224, 225] 2017-2019

Arizona10 (USA) * 90 51.04 [226] 2010

Table 4.1: Harmonic trapping frequencies ωz and their associated dimensionality Λ across ex-
perimental publications from different worldwide laboratories which claim to investigate 2D or
quasi-2D behaviour sorted from most confined (2D) to least confined (3D). Here we see values as
large as Λ = 45 and as low as Λ = 0.84 showcasing a wide interpretation of 2D or quasi-2D in
published works. (* Authors specify a highly-oblate system as opposed to quasi-2D)

4.5.1 Equilibrium statistics

Since we do not have access to an analytic critical temperature of the transition point for

a gas in the hybridised trap we employ, we need to instead implement a set of suitable

observables to indicate the transition numerically. To locate the critical region of the

phase transition, we use a set of different relevant equilibrium quantities, in close analogy

to earlier works [28, 69, 227–230]. The combination of such indicators is then used to

determine the critical temperature across the crossover, without any bias on any particular

quantity, as discussed in Section 4.5.2.

1 Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United
Kingdom.

2Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, Sorbonne Uni-
versité, Paris, France.

3The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637,
USA.

4Atomic Physics Division, National Institute of Standards and Technology, Gaithersburg, Maryland
20899-8424, USA.

5Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University,
Seoul, 08826, Korea.

6MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of
Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

7Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,
Innsbruck 6020, Austria.

8Australian Research Council Centre of Excellence forEngineered Quantum Systems, School of Mathe-
matics and Physics, University of Queensland, St. Lucia, QLD 4072, Australia.

9School of Physics and Astronomy, Monash University, Victoria 3800, Australia.
10College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA.
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Figure 4.4: (a) Transverse profile of the total density of the gas for varying dimensionality Λ at a
fixed temperature T = 50 nK and a chemical potential prescribed by Eq. (4.1). The coordinate
z is normalised to the harmonic oscillator length ℓref . Note that the curves for Λ = 1, 2, 3 are
not visible, as they coincide with the one for Λ = 5. (b) Zoomed-in profile for extreme case of
Λ = 1 where the expected Gaussian ground-state is plotted as a dashed black line. (c) Zoomed-in
profile for extreme case of Λ = 50 (right) where the expected Thomas-Fermi ground-state profile
is plotted as a dashed black line.

At this juncture, it is worth remarking that the SPGPE is inherently a high-temperature

theoretical framework, in the sense that the equilibration processes described by the

SPGPE become inefficient when T/Tc is significantly less than 1. At such low tempera-

tures, the criterion that the thermal reservoir contains many weakly populated thermal

modes is not met [127] and large fluctuations in equilibrium statistics are expected. The

order parameter introduced in Section 4.5.1 is particularly susceptible to such fluctuations

(see Fig. 4.9) at low temperatures where the assumption of many macroscopically occupied

coherent modes below the cutoff fails. We stress that the region of highest significance

from a numerical standpoint is close to the critical region. Therefore the spurious values

in equilibrium statistics at low-temperature are deemed negligible to our main results in

this chapter.
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Penrose-Onsager diagonalisation

Firstly, to identify the existence of a condensate in the system, we use a standard pro-

cedure [127] based on extracting atom numbers, Ni, corresponding to the i-th mode

through Penrose-Onsager diagonalisation [51] of the one-body density matrix ρ (r, r′) =

〈Ψ∗(r)⊗ Ψ (r′)〉N , where 〈. . .〉N denotes an averaging overN stochastic realisations. Eigen-

values extracted in this manner allow, for i = 0, the reconstruction of the corresponding

mode, ψ0(r), with the largest eigenvalue, which we henceforth identify as the condensate

mode. In Fig. 4.5, we see clearly that for the Λ = 50 system along the central plane,

the condensate mode ψ0 [Fig. 4.5(a)] corresponds to the minimally excited ground state

solution, whilst the subsequent modes ψ1 [Fig. 4.5(b)], ψ2 [Fig. 4.5(c)] and ψ3 [Fig. 4.5(d)]

correspond to the first excited modes along the planar directions. Beyond identifying dis-

y
[¹
m
]

-10

0

10

x [¹m]
-20 -10 0 10 20

y
[¹
m
]

-10

0

10

x [¹m]
-20 -10 0 10 20

(a) (b)

(c) (d) S

¡ ¼

0

¼

Figure 4.5: Normalised density and phase of the lowest four system modes (a) ψ0, (b) ψ1, (c) ψ2

and (d) ψ3 along the z = 0 plane for the Λ = 50 system at T = 200nK visualised concurrently
by transparency and colour respectively. We highlight that each mode is normalised to its own
individual maximum amplitude and that each mode has a distinct atom number that decreases
with the mode index.

tinct modes and the condensate fraction N0/N , we can also extract the ratio, N1/N0. This

gives the ratio of atoms in the second lowest in respect to the lowest (condensate) mode.

Here, one would expect an imminent crossing of the phase transition typically when there

are half as many atoms in the second-lying mode as in the first.
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Quasi-condensation

The second indicator we utilise to locate a crossing is the quasi-condensate. Condensa-

tion refers to a state with stable coherent phase and a single macroscopically occupied

mode, arising when both density and phase fluctuations are suppressed. While this is

highly-relevant in 3D systems (below the regime of critical fluctuations), lower dimen-

sional systems feature pronounced phase fluctuations even when density fluctuations are

suppressed [164, 198, 200], leading to a state of quasi-condensation, which spans multi-

ple microscopically occupied modes [231, 232]. A quasi-condensate can be considered as

a condensate with a fluctuating phase [229, 233]. One may numerically determine the

number of atoms in the quasi-condensate via [47, 217]

NQC =

I
2 〈|A0|2〉2N − 〈|A0|4〉N , (4.33)

where A0 =
%
dr ψ∗

0(r)Ψ(r). These two independent equilibrium measures reveal a deeper

understanding on the character of condensation within the system. In addition, one

may introduce a further measure of the difference between quasi-condensation and Bose-

Einstein condensation through the parameter

ζ =
NQC −N0

NQC
(4.34)

which should reveal a noticeable difference in behaviour in the 2D, where BEC is precluded,

and 3D cases. This is exactly demonstrated in Fig. 4.6. Here we see a noticeable shift

in behaviour across dimensionality. As dimensionality increases, we see a more gradual

increase in ζ before a saturation at the crossing of the phase transition. For the analysis

of the critical temperature, we omit the behaviour of the quantity ζ, due to the relatively

smooth behaviour of the quasi-condensate across the phase transition.

Binder cumulant

An additional important quantity which is commonly used to characterise the critical

region is the Binder cumulant [28, 69, 229, 230, 234–236], which is known to display

critical behaviour across the phase transition, yielding – in the limit of infinitely large 3D

boxes – a step-like behaviour from 1 (fully coherent system) to 2 (pure thermal state),

with such transition being smoothed in finite systems, or due to the presence of harmonic

confinement [28, 69, 229]. For the analysis and determination of the phase transition

temperature we choose to employ the cumulant defined by

CB =

8
|A0|4

9
N

〈|A0|2〉2N
, (4.35)
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Figure 4.6: Difference between the quasi-condensate number and condensate number as defined by
Eq. (4.34) for each dimensionality we consider as indicated by the legend. Dotted lines are added
as guides to the eye.

which considers the lowest condensate mode as opposed to the entire C-field sometimes

employed in the literature.

Order parameter

Finally, we also use the order parameter defined by [28, 69, 230]

m =

8HH% dr Ψ(r)
HH9

N2J%
dr |Ψ(r)|2

K

N

(4.36)

which acts as a further measure of the degree of the degeneracy of the system associated

to the breaking of a U(1) symmetry. The order parameter should stabilise given enough

time for the system to settle into its equilibrium configuration. The order parameter

offers a computationally simpler calculation than the condensate fraction, however lacks
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robustness against fluctuations, especially at lower temperatures.

4.5.2 Determination of the phase transition via equilibrium statistic

thresholding

We now proceed to extract the critical phase transition temperatures across dimensionality

by tracking our equilibrium statistics as introduced in Section 4.5.1 across temperature.

Localisation of the phase transition and the respective critical region is performed by

numerical thresholding for each considered equilibrium parameter. We find both the min-

imum and maximum temperature at which any of our equilibrium statistics indicate a

crossing from coherent to incoherent behaviour for a given dimensionality, we then aver-

age across the identified extrema to identify the critical phase transition point Tc. Then,

accounting for the thermal resolution of our simulations, we combine the half-width of the

numerically-extracted band (where present) with an additional independent uncertainty

of ±5nK to define the overall width of our critical region. We emulate previous works [69]

and stipulate the crossing of a phase transition occurs once the condensate fraction falls

below 5% and introduce the cutoff (N0/N)cut = 0.05 to signpost a crossing of the critical

region. At the phase transition point, occupation levels in the lowest and second-lowest

mode should become comparable. Considering the ratio of the two lowest system modes

N1/N0 [184], one would expect a transition when there are approximately half as many

atoms in the second-lying mode as in the first. At this point, the thermal energy is large

enough such that the occupation of the condensate mode is of the same order of other

coherent modes, signalling an imminent phase transition. As such, we introduce a cutoff

value rcut = 0.5 to indicate a crossing. The Binder cumulant, as previously defined in

Eq. (4.35), is a well established parameter to signal the crossing of a phase transition

[28, 230]. In the thermodynamic limit for a homogeneous system, the critical value is

known to be C∞
B = 1.2430 [237], whereas for trapped systems, where finite-size effects can

manifest, this value is lower [228]. In this vein, we select a critical value of Ccut
B = 1.2

to indicate a crossing of the critical region. Lastly, we consider the order parameter m

as defined in Eq. (4.36) normalised to its value at zero temperature m0. For a zero tem-

perature system m/m0 = 1, falling to m/m0 ∼ 0 across the transition [161, 230]. To

capture the transition, we introduce a threshold value of mcut = 0.25. Using each of the

aforementioned threshold values in combination, a systematic simultaneous crossing of the

critical region is revealed for each of the equilibrium statistics chosen.
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4.6 Phase transition temperature as a function of dimen-

sionality

In this section we explore, in a systematic way, the effects of dimensionality on the trapped

Bose gas in a planar potential under transverse harmonic confinement. We begin with the

2D (Λ = 1) and 3D (Λ = 50) dimensional extremes, before considering the dimensionality

crossover region between them.

4.6.1 Localising the BKT transition

To characterise the 2D phase transition in our numerics, we plot in Fig. 4.7 the relevant

quantities discussed previously (namely N0/N , N1/N0, CB and ζ) for Λ = 1 as a function

of scaled temperature, T/TBKT. Here T corresponds to the temperature of the thermal

reservoir in contact with which the Bose gas has reached equilibrium, and TBKT is defined

in Eq. (4.31). Since the transition is not sharp in a finite size system [28, 229, 238] the de-

termination of the actual transition temperature depends on the criterion and the indicator

that is chosen to define it. The sharpest indicator is the Binder cumulant [Fig. 4.7(c)],

which suggests that the critical temperature in the trapped gas is indeed very close to

TBKT, i.e., the expected value in the thermodynamic limit. The occupation of the lowest

states is smooth across the BKT transition [Fig. 4.7(a)-(b)], with the quasi-condensate

density remaining significantly larger than the condensate fraction N0/N : the latter is

evident by the fact that ζ remains finite and significantly nonzero for all T < TBKT. Over-

all, the results that we obtain here with a 3D SPGPE in a tight transverse confinement

(Λ = 1) are fully consistent with the purely 2D SPGPE simulations of Comaron et al

[28], where the relevant features of the transition were discussed in detail. This validates

our 3D formulation of what is essentially 2D physics within the hybrid-basis approach we

enact. Previous works have also used the average number of vortices at equilibrium as a

signature of the BKT transition in the 2D gas (see, e.g. [28, 229]). From Fig. 4.3, we see

that by employing a plaquette method to identify vortex cores across the central plane of

our Λ = 1 simulations, we indeed achieved, as expected, results which are in agreement

with the purely 2D simulations of Comaron et al [28]. Specifically, in our 2D limit of Λ = 1

we find qualitative agreement with these results, across all of our considered quantities.

We thus use this study as a premise of our work as we extend across dimensionalities.

4.6.2 Localising the BEC transition

The corresponding 3D limit can be well probed by our largest choice of Λ = 50, as can be

seen by comparing such results with the predictions for BEC in 3D. In particular, using
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Figure 4.7: Results for Λ = 1 (2D limit). (a) Equilibrium condensate fraction N0/N as a func-
tion of rescaled temperature. (b) Equilibrium ratio of lowest modes N1 and N0 as a function of
rescaled temperature. (c) Equilibrium Binder cumulant CB as calculated from the Penrose-Onsager
condensate as a function of rescaled temperature. (d) Difference between quasi-condensate and
condensate as identified by ζ as a function of rescaled temperature. In each plot, temperature has
been rescaled to the BKT critical temperature as given by Eq. (4.31) for an infinite 2D system and
marked as a vertical dashed line.

the density of states

g($) =
mLxLy$

2π!3ωz
(4.37)

with ωz = ωref/Λ, one can calculate the temperature at which the condensate forms in an

ideal gas in the same hybrid trap:

TBEC =

"
12!3ωrefN

πk2BmΛLxLy
. (4.38)

Due to interaction and finite-size effects, the actual transition temperature of a confined

weakly interacting Bose gas is expected to be downwardly shifted [1, 2, 69, 169, 239], the

shift depending on the type of confinement.

As in the 2D case, we calculate the Binder cumulant, the fractions N0/N and N1/N0,

and the quasi-condensate density. For each equilibrium configuration at a temperature T
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we calculate the total number of atoms, N , and we use it to estimate the ideal gas critical

temperature TBEC from Eq. (4.38); then, all quantities are plotted as a function of the

rescaled temperature T/TBEC. The results are shown in Fig. 4.8. Compared to the 2D

case, the equilibrium statistics exhibit a narrower critical region, with sharp transitions

present in the ratio of dominant modes N1/N0 and the Binder cumulant. The condensate

fraction N0/N vanishes at the transition and its temperature dependence is similar to the

one predicted for an ideal gas in the same trap except for a downward shift [240]. The

observed transition temperature is at about 0.9TBEC.
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Figure 4.8: Results for Λ = 50 (3D limit). (a) Condensate fraction N0/N , alongside the ideal gas
law result (dashed magenta line). (b) Ratio of lowest modes N1 and N0. (c) Binder cumulant
CB . (d) Difference between quasi-condensate and condensate as identified by ζ as a function of
rescaled temperature. In each plot, temperature has been rescaled to the ideal gas BEC transition
temperature defined in Eq. (4.38) and marked as a vertical dashed line.

4.6.3 From 2D to 3D

By systematically evaluating the equilibrium statistics across dimensionality and tem-

perature we can recover a global picture of the character of the phase transition as we

vary dimensionality. This is exactly what we show in Fig. 4.9, where for visual clarity

we present a subset of dimensionalities that capture the characteristic change across the
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range of dimensionalities we consider.

To estimate the transition temperature Tc we use, for each probed quantity, the rele-

vant cutoff value marking the transition from coherent to incoherent regime as discussed

in Section 4.5.2, with each cutoff value indicated by the horizontal dashed line in each

panel of Fig. 4.9. Using these as our critical values, we identify a specific temperature at

which the transition likely occurs, as the first value within the incoherent region which

crosses the indicated threshold. Although in some cases such numerical temperature iden-

tification perfectly overlaps (within our temperature and numerical resolution) across all

panels (see Λ = 15, 30 cases), in most cases the different probed quantities yield slightly

different numerical values for the critical temperature. Such an effect is accommodated

by adding to each plot a coloured vertical band indicating the uncertainty, as discussed in

Section 4.5.2, across all probed markers for a given value of Λ. In Fig. 4.9, we plot only

a subset of the dimensionalities we consider for visual clarity in distinguishing the critical

temperature bands. However, to establish a global picture of the systematic crossing of

the phase transition across dimensionality we perform this analysis across each considered

dimensionality.

Having located systematic crossings of the equilibrium statistics for each dimensionality

considered, the identification of the critical temperature is then accessible as a function of

the dimensionality parameter Λ as displayed in Fig. 4.10, with panels (a) and (b) based

on two different numerically-generated datasets, differing in the way µ is changed when

transitioning from 2D to 3D. Fig. 4.10(a) corresponds to results extracted from the data

shown in Fig. 4.9, for which the chemical potential µ is defined according to Eq. (4.1)

with µ2D independent of Λ. Fig. 4.10(b) is based on a different protocol for our chemical

potential choice, where we substitute the first term on the right-hand-side of Eq. (4.1) with

a function of Λ that linearly interpolates from its quoted 2D value, µ2D for Λ = 1, towards

its 3D value (3/2)µ2D, assumed here to arise when Λ = 50 as discussed in Section 4.3.

Figure 4.9 (following page): Dependence of equilibrium parameters characterising the degree of
phase coherence of the system as a function of absolute temperature, plotted for different values of
the dimensionality parameter Λ. (a) Equilibrium condensate fraction N0/N . (b) Ratio of lowest
modes N1 and N0. (c) Binder cumulant CB . (d) Order parameter m normalised to the zero
temperature result m0. The dashed horizontal line in each subplot corresponds to a cutoff value
used to identify the transition for the respective equilibrium observable (with details of such choice
discussed in Section 4.5.2). Each colour corresponds to a different value of dimensionality Λ as
indicated in legend. Solid vertical coloured lines in each subplot correspond to the first numerical
point deemed to have crossed the phase transition for the respective quantity towards the incoherent
regime, thus marking the identification of the critical temperature for each value of Λ based on
that physical quantity. Vertical coloured bands (where present) are identical throughout (a)-(d)
and indicate the full range of numerically-identified critical temperature values across the different
quantities plotted in (a)-(d). The midpoint of such band is subsequently chosen as our numerically
identified critical temperature for each value of Λ.
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This choice is designed to match the T = 0 Bogoliubov sound speed across the dimensional

extremes (see Section 23.1 in [2]). The corresponding ratios of µ/!ωz differ across the two

panels, as shown by the upper labels.
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Figure 4.10: Numerically-extracted phase transition temperature Tc (main plots), and central
densities (insets) as a function of dimensionality parameter Λ, for two different protocols for our
choice of chemical potential µ based on Eq. (4.1). Specifically, they correspond to (see text): (a)
a constant µ2D = (4.64µm−2)!2/m value, and (b) a value linearly interpolated between such µ2D

value, for Λ = 1, and (3/2)µ2D, for our most 3D case with Λ = 50. In both cases, black filled
points correspond to the mean extracted transition temperature as determined by the equilibrium
statistics (Fig. 4.9), with dashed black lines as a guide to the eye. Error bars and shaded regions
highlight the associated uncertainty, arising from a combination of the width of the bands in
Fig. 4.9 and a systematic uncertainty of ±5nK due to our limited resolution in probing distinct
temperatures. The Hollow blue diamond marks the analytical TBKT transition temperature at
Λ = 1, from Eq. (4.31). Red hollow points for µ/!ωz > 3, with dotted red lines as a guide to the
eye, indicate the analytical 3D ideal gas temperature, TBEC, in our chosen geometry, using the same
total atom number N in Eq. (4.38) as in the corresponding SPGPE simulation for the same Λ. We
highlight that the characteristic shift in our results compared to the ideal gas critical temperature
is expected due to interaction and finite-size effects [240]. Green points in (a) correspond to further
simulations with two different values of µ at small Λ aimed at demonstrating the limited sensitivity
of the rapid initial growth of Tc with Λ on density. Insets: Total density at the centre of the trap;
for each Λ, the point represent an average of the central density in a few SPGPE simulations for
T ∼ Tc, and the coloured bands indicate the corresponding numerical uncertainty.

In both cases the numerically identified critical temperature exhibits a very rapid

increase with increasing value of Λ between the expected limits. For small Λ we recover

the analytically-expected BKT transition temperature, given by Eq. (4.31) and marked

by the leftmost hollow blue diamond. It is worth stressing that Eq. (4.31) is strictly

applicable to the pure 2D gas; in our case, it can be safely used for a comparison with

our Λ = 1 results, but it should not be used as a relevant scale when extrapolating across
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dimensionality. We observe a monotonic increase of Tc with Λ as the system transitions to

3D, with the dominant increase in the critical temperature occurring for µ/!ωz ≲ 2. As

µ/!ωz increases beyond that, the critical temperature dependence on Λ rapidly mimics

the one expected analytically for an ideal Bose gas in the 3D limit as given by Eq. (4.38)

for the given atom number (strictly valid in the Λ → ∞ limit): these are marked, for

µ/!ωz > 3, by the hollow red symbols in each subplot; note that the increase seen in

panel (b) for large Λ is a direct consequence of our chemical potential protocol, associated

with a linearly increasing density/atom number with Λ. As expected, our numerically-

extracted values are consistently lower than the analytical ideal gas ones, due to finite-size

and interactions effects.

The insets plot the dependence of the central condensate density, averaged along the

planar directions and evaluated at the phase transition Tc for each given geometry, as a

function of Λ, with the different observed behaviour arising from the different chemical

potential protocols adopted. Although the densities exhibit up to 20% variation, it is

important to highlight that the dominant dependence of Tc on Λ for small values of Λ

is not a consequence of the changing density. To this aim, we have added two further

ad hoc simulation points, spanning the density extrema in (a) and observe no noticeable

change (within our uncertainties) to the numerically-extracted value for Tc. We thus

directly conclude that the observed changes to the location of the phase transition are a

consequence of dimensionality.

In the SPGPE formalism, care must be taken to ensure macroscopic occupation of

modes below the cutoff. Nevertheless, the precise value of the cutoff may be somewhat

arbitrary, and one should indeed ensure slight variations in cutoff do not overshadow the

determination of quantities being probed. To ensure this is the case, we have varied the

cutoff by ±10% for the specific case of Λ = 5 (firmly within the dimensionality crossover

region) and, repeating our same scheme for locating the phase transition, find an indis-

cernible shift in identified critical temperature, which falls within numerical uncertainties

for the critical temperature determination, as laid out in Section 4.5.2. This specific value

of Λ = 5 lies within the region of largest variation in Tc as later evidenced by Fig. 4.10

and hence this relationship should hold across all dimensionalities we consider.

4.7 Chapter conclusions

In this chapter, we have revealed that a marginally stronger harmonic trapping strength

can lead to large differences in phase transition temperature when exploring BKT physics.

This is an important consideration in view of the current experiments with quasi-2D con-

figurations. It is also worth noticing that the range µ/!ωz where Tc ramps up toward the

asymptotic 3D behaviour is the same where the healing length, ξ, becomes comparable to
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the transverse size of the gas, ℓz; in particular, for µ/!ωz = 2 the healing length at T = 0

is ξ = !/
!
2mgn(0) ∼ (1/2)ℓz. In terms of vortices, as mentioned earlier when comment-

ing about Fig. 4.1, this implies a transition from point-like defects in a 2D background to

vortical filaments in a 3D superfluid. This is not surprising, but our simulations provide

a quantitative and systematic description of the dimensional crossover in terms of equilib-

rium properties, going beyond the known qualitative picture. In addition, Fig. 4.10 also

suggests an interpretation of the behaviour of Tc in terms of BEC vs. BKT physics. In the

large Λ limit, if one cools down the Bose gas close to Tc, the quantum degeneracy manifests

itself almost at the same temperature at which the lowest state becomes macroscopically

occupied and the BEC soon forms together with the superfluid phase. Conversely, for

small Λ, due to stronger effects of fluctuations, quantum degeneracy is associated to a

quasi-condensation, where many modes have large occupation; one then needs to cool

the gas further in order to allow the system to develop coherence and superfluidity as a

result of vortex-pair binding. For gases with similar densities, as in our simulations, this

implies a critical temperature lower in 2D than in 3D. This is also consistent with the

results obtained by Delfino et al [203] for a weakly interacting Bose gas confined within a

slab geometry (an anisotropic L2 × Z lattices with Z ≪ L governed by a Bose-Hubbard

Hamiltonian), where TBKT was also found to depend on the slab thickness, approaching

TBEC from below in the 3D limit.

The final topic in this thesis will build upon the results of this chapter. With the

phase transition across dimensionality successfully extracted, we are now able to build

a systematic picture of how the sound speed might change in response to a dimensional

crossover. In the 2D limit, it was thought that the second sound, associated to collective

excitations on top of the coherent modes of the system, would vanish at the phase transition

[241]. However, recent articles have suggested a continuity of the second sound across the

phase transition [26, 27] facilitated through a quasi-condensate. The following chapter will

reformulate this problem in terms of a numerically extracted phase transition temperature,

instead of the analytic predictions of BKT. In addition, through a variation of Λ, we will

probe the effects of dimensionality on the character of the sound across temperature.
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Chapter 5

Characterisation of sound speed in

the weakly interacting Bose gas

through the 2D-3D dimensionality

crossover

In this chapter we again investigate the dimensional crossover of the trapped ultracold

Bose gas; this time focusing on the dynamical response of the system to a small-amplitude

perturbation. Such a perturbation will generate a phonon-like density wave propagating

at the sound speed. We systematically probe the effects of a dimensional crossover on the

propagation of sound within the same system as Chapter 4. Here we use our numerically

extracted phase transition temperature to explore the nature of sound close to the phase

transition. The findings of this chapter are preliminary and our results are currently

being written up to form a paper on the nature of sound through the phase transition

dimensionality crossover from 2D-3D.

5.1 Propagation of sound in quantum fluids

One of the hallmarks of superfluidity in quantum systems is the second sound, as predicted

by the two-fluid hydrodynamic theory of Landau [32, 242]. The second sound has been

observed in both liquid helium experiments and atomic gases [32, 243–246]. Hydrodynamic

two-fluid theory stipulates that a fluid below Tc is comprised of both a normal part and a

superfluid part, where the two are in thermodynamic equilibrium. The two sound speeds

derived through this theory pertain to different variations of the total density and entropy

per particle. That is, in homogeneous gases [247], the first sound is a pure density wave

and the second sound is a pure entropy wave. Specific to the case of a weakly interacting
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Bose gas, the first and second sounds are essentially uncoupled oscillations of the thermal

cloud and condensate respectively [248]. In fact, the second sound is the low-frequency

continuation of the low-temperature Bogoliubov symmetry-breaking mode as discussed in

Section 1.6. Above Tc, the normal fluid supports just the regular density wave oscillations,

and hence the second sound is exactly a phenomenological manifestation of superfluidity.

5.2 Collisional regimes

Here we take the opportunity to briefly introduce the differences between a hydrodynamic

and collisionless regime. Typically, one may consider a fluid to be in the collisional hy-

drodynamic regime if the mean rate between interactions of fluid particles Γcoll is much

larger than the typical timescales of the fluid dynamics ω−1. Here ω is the frequency of

the sound c = k/ω, with wavevector k. Conversely, a fluid is said to be in the collisionless

regime if instead the collisions between particles are much slower than the typical dy-

namical timescales of the fluid. It is worth clarifying that the term collisionless does not

correspond to a lack of interactions, but rather simply that collisions are rare. Formally

we can consider these individual regimes as

Γcoll ≫ ω Hydrodynamic collisional

Γcoll ≪ ω Collisionless.
(5.1)

In the 2D study conducted by Ville et al [26] at Λ = 1 which serves as our baseline for the

exploration of dimensionality, the authors report a collisional rate Γcoll ∼ 1.6−3.4ω, placing

them in a crossover region between the hydrodynamic and collisionless regimes. This is

important, as in the hydrodynamic picture, one expects Landau damping [249]. This form

of damping is associated with the decay of low-lying collective excitations via scattering

events upon thermal excitations at the same frequency. As temperature increases, the

number of thermal excitations increases in tandem, leading to a decrease in measured

quality factor for a perturbation at higher temperature. Therefore, agreement with the

predictions of damping rate for an excitation across temperature provides strong evidence

for the hydrodynamic regime in which an experiment is thought to reside.

5.3 Experimental works on the second sound as a function

of temperature

In this section we review previous studies which specifically aim to measure the speed

of sound in a trapped ultracold atomic Bose gas. We pay particular attention to the

collisional regime reported in each, since the hydrodynamic picture of each experimental

configuration largely determines the nature of sound speed across temperature.
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5.3.1 Experiments in quasi-1D geometry

The experimental measurement of sound speed was an alluring topic shortly after the first

experimental realisation of a BEC. It offers a fundamental viewpoint to study the effects

of collective dynamics within a system and acts as a reliable tool to probe superfluid

properties. In the field of weakly interacting Bose gases, the first measurement of sound

was achieved by the group of Ketterle at MIT [250] and later explored by the group of

van der Straten [251] at Utrecht University1 at finite temperature. In each experiment,

they observe how, in a highly elongated 1D anharmonic trap, a density defect propa-

gates spatiotemporally. Both measurements were in close agreement with the prediction

of Bogoliubov theory for the phonon-speed. However, due to the anisotropic nature of

the trapping potential, a large amount of effort was expended to account for the inhomo-

geneity of the generated sound wave. The experimental protocol of Meppelink et al [251]

involved preparing the condensate in the presence of an optical repulsive dipole potential,

positioned centrally within a strongly anisotropic 1D harmonic trap. Upon releasing this

potential, an outwards travelling density wave is produced. The shape of this initial gaus-

sian perturbation deforms during the propagation due to the dependence of the sound

speed on density. This causes the centre of the dip to move slower than the outer edges,

leading to an eventual shockwave when the density gradient between the centre and the

edges is of the order ξ−1. The authors argue that, taking this effect into account, they

accurately measure the second sound to be systematically within 7% of the Bogoliubov

sound speed for the given condensate density. In this experiment, the authors report a

hydrodynamicity Γ̃ ≤ 10 in the axial direction and the authors find that the experimental

data is best described by hydrodynamic Landau theory. However, due to large uncertainty

in the measurement in the modest temperature range, it is difficult to conclude that they

are truly in the collisional regime. This can be seen from the overlapping diamonds and

squares within the experimental data in Fig. 5.1 corresponding to the predictions from

Landau and collisionless ZNG theory respectively.

The ZNG theory is encapsulated in the broader literature of finite temperature non-

equilibrium theory developed by the group of Zaremba, Nikuni and Griffin. Popularly

referred to as the ZNG model [252–256], this theory stemmed from the work of Kirkpatrick

and Dorfman [257] who extended two-fluid hydrodynamic theory to the dilute Bose gas.

We highlight that studying the propagation of sound in this framework is beyond the scope

of this thesis. This is predominantly due to the fact that the ZNG approach relies on the

existence of a well-defined condensate, which is unsuitable in the framework of a quasi-2D

theory due to the preclusion of condensation in the 2D limit at finite temperatures.

1Atom Optics and Ultrafast Dynamics, Utrecht University, The Netherlands.
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Figure 5.1: [Reprinted figure with permission from [251] Copyright (2022) by the American Physical
Society.] Measured phonon velocity as a function of the thermal density. Sound speed is normalised
for each data point to both the second sound speed calculated from hydrodynamic Landau and
Zaremba-Nikuni-Griffin theory, showing agreement with both.

5.3.2 Experiments in quasi-2D geometry

With the recent developments of box potentials for Bose gases [3, 4, 171], a new playground

of experiments probing sound speed has opened up. The homogeneous background density

in these configurations leads to a more careful extraction of the sound speeds and has been

a topic of great interest. We now pay particular attention to a number of works in the

2D limit. The first, conducted by the Paris experimental group of Dalibard [26], entails

the probing of sound speed in a two dimensional Bose gas. In this work, they report a

second sound mode in both the superfluid and normal phases. Deep within the super-

fluid regime, the sound speed agrees well with the Bogoliubov prediction. With increasing

temperature, they measure a decrease in the sound speed consistent with the predictions

of two-fluid hydrodynamic theory where the damping of the sound mode increases with

temperature, equivalent to Landau damping. Most interestingly, on crossing the BKT

critical point, they measure a non-vanishing strongly damped density wave, suggesting a

departure from hydrodynamic theory. As previously remarked in Section 5.2, the authors

quote an estimated collision rate Γcoll ≈ (1.6− 3.4)ω, likely placing the experiment within

the collisionless regime. The experiment consists of a rectangular box trap with an ad-

ditional step-like potential spanning 1/4 of the box length engineered to reduce density

in this perturbed region to 1/3 of the background density. The study of the propagation

and subsequent damping of this perturbation reveals information about the second sound

for the system. In Figure 5.2 we see a clear decrease in measured sound with increasing

temperature, matching the prediction of hydrodynamic theory closely up until the critical
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Figure 5.2: [Reprinted figure with permission from [26] Copyright (2022) by the American Physical
Society.] (a) Measured speed of sound c normalised to Bogoliubov phonon speed. Vertical dashed
line highlights the position of the BKT critical point. The solid line shows the result from Landau
two-fluid hydrodynamic theory applied to the 2D Bose gas. Blue data points are experimental
data with corresponding error bars showing statistical uncertainty of fitting procedures to extract
the measured quantities. (b) Extracted quality factor Q from experimental data shown through
blue data points with errorbars indicating statistical uncertainty. Result for Landau damping is
depicted as a solid line below the transition and a dashed line above the transition.

point. At this point, we deviate from the hydrodynamic theory and a non-vanishing sound

speed is measured across the transition. The decreasing quality factor of sound mode is

consistent with Landau damping. It appears then, that this experiment falls within the

collisionless regime. Another experiment aiming to investigate the propagation of sound in

quasi-2D boxes comes from the group of Hadzibabic in Cambridge [218]. Here, they mea-

sure both the first and second sound as a function of temperature and in addition observe

the superfluid density jump inherent to the BKT transition. Interestingly, in this experi-

mental study they report the expected discontinuity in second sound across the transition.

In this paper, the reported dimensionless interaction strength is g̃ = 0.64 and measured

density n ≈ 3µm−2. As such they report an elastic collision rate which is sufficient for

collisional hydrodynamic behaviour, with a reported collisional rate of Γcoll ≈ 4ω. In this

experiment, the longest-wavelength sound mode k = π/Ly is induced through sinusoidal

oscillation of the trap. Through measuring the absorptive response on either side of the

transition as shown in Fig. 5.3a, it is clear that there is a vanishing peak associated to the

second sound. This is exemplified further on the comparison with the dynamical structure

factor in Fig. 5.3b. In this Figure, we see the strong peak at ω = 0 correspondent with the

diffusive mode above Tc. The included inset, which considers the fitted contributions to

the dynamical structure factor with the first sound contributions omitted reveals the clear

and distinct peaks corresponding to the vanishing second sound across the phase transi-

tion. In the same work, the authors provide the first measurement of a superfluid density

within an atomic 2D Bose gas. As such, they were able to measure the superfluid density
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Figure 5.3: [Reprinted by permission from Nature: [218], Copyright (2022)] (a) Normalised re-
sponse spectra both below (top) and above (bottom) the phase transition plotted against frequency
normalised by the Bogoliubov frequency ωB . Depicts two resonances corresponding to the first
(dotted) and second (dashed) sound for each case. (b) Dynamical structure factors. Here, we
see a clear peak for the diffusive mode at ω = 0 which is distinct from the second sound mode
below the transition. Inset displays fitted contributions to the dynamical structure factor with the
first-sound contributions removed for clarity.

as a function of temperature to reveal the superfluid density jump as predicted by Landau

two-fluid hydrodynamics. This measurement strengthens the finding that this experiment

is truly within the collisionless hydrodynamic regime and thus meets the predictions of

the corresponding hydrodynamic theory as we have seen.

5.4 Excitation protocol

To emulate the previous experimental forays into the analysis of the second sound of a Bose

gas, we choose to excite our system with a low amplitude perturbation to selectively excite

the lowest accessible mode. We reformulate our previous potential given by Eq. (3.19) with

the addition of a sinusoidal perturbation and a modified in-plane confinement. As such

we write

V (r, t) = Vbox(x, y) +
1

2
m

,ωref

Λ

-2
z2 + Vpert(x), (5.2)

where the perturbation we add to the system is designed to excite the lowest-frequency

standing wave we can fit within our system and takes the form

Vpert(x, t) = 0.05µ sin

&
2πx

Lx

'
. (5.3)

Our value of excitation amplitude is half as strong as that employed in a previous analysis

of the 2D reference system [161] in which it was found that the amplitude is sufficiently
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weak enough to minimise coupling to other modes of the system. Whereas the previ-

ous study performed calculations in a periodic box, where Fourier transforms can plague

dynamics with spurious behaviour, we work in the embedded box in order to minimise

coupling outside of the system domain. Moreover, in experimental trapping geometries,

in-planar trapping is provided by a DMD which does not have infinitely sharp walls. To

emulate this behaviour, we make a modification to the in-plane confinement by introducing

a tanh2-ramp at the edges of the planar box to replace the previous hard-wall confine-

ment. In this case, the confinement of the planar box more accurately portrays the DMD

confinement typically used in 2D experiments and minimises numerical anomalies in the

reflection of sound waves at the boundaries. The modified boundary can be evaluated by

Ξ = 30µ

.
min

>
1, 4− tanh2

.
x±

0
Lx +

w
2

1

w

/
− tanh2

.
y ±

0
Ly +

w
2

1

w

/?/
(5.4)

such that

Vbox(x, y) =

)
*

+
Ξ, −Lx

2 ≤ x ≤ Lx
2 ,−Ly

2 ≤ y ≤ Ly

2

30µ, otherwise,
(5.5)

where w is a width parameter and is chosen to be 0.2µm to minimally affect atom number

but provide a significant ramping of the density at the boundary. The full potential of

Eq. (5.2) at the z = 0 plane is depicted in Fig. 5.4. Notice that the amplitude of the

excitation is barely visible in comparison to the hard-wall potential boundary and the

excitation excites a standing sine wave in the range of the embedded box (Lx, Ly) as

opposed to the auxiliary box in which it is embedded of size (Lx,Ly).

In order to prepare equilibrated realisations in the presence of the perturbation, we

take each of the C-field wavefunctions of the previous chapter and evolve for another 25τγ

to rethermalise in the presence of the sinusoidal perturbation. This procedure is explained

in greater detail in Appendix A. It is clear, that for systems with lower dimensionality and

thus a lower chemical potential, the effect of the excitation is amplified, due to the nature

of the chemical potential across dimensionality as provided by Eq. (4.16).

5.5 Dynamical evolution

Once equilibrium has been reached in the presence of the modified potential, we are now

free to explore the dynamical properties of the given system. Whilst equilibration takes

place under SPGPE theory we, akin to other works [27, 166, 186, 191, 258], evolve the C-
field in the absence of dissipation and noise by setting γ = 0. This decoupling to the I-field
allows a conservation in atomic density, which might otherwise exhibit large fluctuations.

Therefore we propagate the state forward with just a projected Gross-Pitaevskii equation
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Figure 5.4: For the trapping specified by Eq. (5.2) we plot (a) the central points along the x-axis
in black. In red we also plot the sinusoidal perturbation Vpert. In (b) we plot the shape of the
trapping potential along along the z = 0 plane. In (c) we display the trapping profile along the y
direction. Each subplot is normalised to the chemical potential µ.

when considering dynamics. By an instantaneous removal of the sinusoidal perturbation

we produce a standing wave along the x-direction. Monitoring the speed and damping of

the resultant density wave across both dimensionality and temperature, we may elucidate

the character of the second sound through the phase transition dimensionality crossover.

The density profile of the system oscillates in time, due to the singular mode excited.

This can be seen clearly for each value of dimensionality, for which a subset is shown as

a carpet plot for choice values of Λ in Fig. 5.5. We also note here, that since we only

consider the evolution of the C-field, it is not possible to extract the first sound speed

due to the projection operator casting out the dynamics of the thermal modes. From the

evolution of the density along the excited x direction, we extract the amplitude of the

first mode using a Fourier analysis and normalise by the maximum (t = 0) value A0 to

generate Â = A/A0. Typical dynamical evolutions of this quantity are demonstrated for a

range of dimensionalities at various temperatures in Fig. 5.6. From the shape of the curves
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Figure 5.5: Density profiles along the x-direction as a function of time. The density is differenced
with and normalised to the ensemble-averaged equilibrium solution neq

x for the cases of (a) Λ = 1,
(b) Λ = 10, (c) Λ = 25, (d) Λ = 50 at temperatures corresponding to T/Tc = 0.4, T/Tc = 0.4,
T/Tc = 0.41, T/Tc = 0.41 of their numerically identified transition temperature respectively.
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fit Â
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Figure 5.6: For the same values of Λ as in Fig. 5.5, we plot the dynamical evolution of the amplitude
of the normalised first Fourier mode Â for three selected equivalent temperatures. In row (a) we
plot, for Λ = 1, the response at temperatures (i) T/Tc = 0.4, (ii) T/Tc = 0.64, (iii) T/Tc = 0.88.
In row (b) we plot, for Λ = 10, the response at temperatures (i) T/Tc = 0.4, (ii) T/Tc = 0.6, (iii)
T/Tc = 0.92. In row (c) we plot, for Λ = 25, the response at temperatures (i) T/Tc = 0.41, (ii)
T/Tc = 0.61, (iii) T/Tc = 0.92. In row (d) we plot, for Λ = 50, the response at temperatures (i)
T/Tc = 0.41, (ii) T/Tc = 0.61, (iii) T/Tc = 0.87. In each plot, the temperature is normalised by
the critical temperatures for the given Λ as extracted and presented in Fig. 4.10(b).

produced, it becomes convenient to introduce the fitting function of a damped harmonic

oscillator via

FDHO = e−t/τ

&
cos (ωt) +

1

ωτ
sin (ωt)

'
(5.6)
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to track the lifetime of the excitation on the density profile. This fitting function was also

used in the previous analysis of standing wave oscillations in the trapping-configuration

of Ville et al [26, 27] and so our analysis is consistent with their methodology. In this

expression, we have the decay and oscillation frequency of the standing wave, symbolised

by τ and ω/2π respectively. The damping rate can thus simply be defined as 1/τ and the

quality factor follows as

Q = ωτ. (5.7)

This quantity expresses the energy loss in a single cycle of the harmonic oscillator, relative

to the total energy within the system. From the frequency, it becomes possible to extract

the second sound speed via

c =
Lxω

π
, (5.8)

which we will subsequently normalise by the Bogoliubov sound speed cB extracted from

zero-temperature PGPE simulations.

These zero temperature PGPE simulations are performed with the same parameters

as previously specified in Chapter 4 for each considered Λ. The relationship between

dimensionality and Bogoliubov sound speed for these simulations is presented by Fig. 5.7

in blue. In addition, we plot the result corresponding to the analytic formula of Eq. (1.115)

in red. Here we see a reasonably stable Bogoliubov sound through the dimensionality

crossover for both definitions. Improvement could be gained in future work through a

more careful interpolation than the linear one we implemented with Eq. (4.16).

At low temperatures, where the macroscopic occupation of all modes below the cutoff

fails in the SPGPE theory, we omit ensembles where an undesirable coupling to transverse

modes is detected. In our analysis, we restrict the extraction of fitting parameters to

cases where Q > 1. In cases where Q < 1, we consider the sound to be overdamped

and thus the calculation of a sound speed is no longer feasible. The falloff in excitation

amplitude for the case of Λ = 1 is visible in Fig. 5.8 where we plot the evolution of Â

for each temperature where a valid quality factor is measured. Here we see a pronounced

increase in the damping as the phase transition is approached from below, leading to an

immeasurable sound speed very close to the critical point.

5.6 Effects of dimensionality on the second sound speed

Our systematic analysis of the effects of dimensionality on the second sound begins by

checking our method against one in the pure 2D formalism. We remark here, that since

we achieve comparable atomic densities and the same interaction strength across dimen-

sionality, we expect to remain within the same hydrodynamic regime. In our quasi-2D
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Figure 5.7: Bogoliubov sound speed cB as a function of dimensionality, calculated for two different
methodologies. In blue we plot the values used in our work, corresponding to zero-temperature
PGPE simulations with the same parameters. In red we plot the analytical result of Eq. (1.115)
from total central densities of our simulations at T = 10nK.

system, we can estimate the hydrodynamic parameter [259] with

Γcoll ≃
"

1

n2Dg̃32D

2π

Lx
≈ 0.48. (5.9)

With this value, it is most probable that our work takes place within the collisionless

regime. In Fig. 5.9, we compare our measurement of second sound in the 2D limit (Λ = 1)

with previous works [27, 161] and see a close agreement. Our data, shown in blue, reports

a sound speed approximately 10% smaller across temperature than that reported by Ota et

al [27], shown in red. Here the simulations used to extract the sound speed vary somewhat,

in that a single standing wave is excited within a fully periodic box. In green, we plot the

the data from Larcher [161]. Here a step-like potential barrier as previously described in

Section 5.3.2 is used to excite the lowest system modes within a computationally embedded

box, like ours. In this case we report a much closer agreement with the measured sound.

This qualitative agreement with both sets of results is promising and suggests that our

full 3D formalism correctly reduces to the 2D theory in low dimensionality. Additionally,

we also report a close agreement with the result of Landau theory for the hydrodynamic

second sound [241, 260] below the phase transition as plotted in black. Most importantly
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T=30nK
fit Â
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T=80nK
fit Â
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T=120nK
fit Â

Figure 5.8: Oscillation of the normalised amplitude Â as defined in the text of Section 5.5 for
Λ = 1. Extracted points are plotted in blue for each value of temperature where the quality
factor Q > 1. The dashed black line for each subplot indicates the fit provided by Eq. (5.6). The
measured sound speed, quality factor and normalised temperature are overlayed with text for each
individual subplot.

however, we report a continuity in the second sound across the analytically defined BKT

phase transition. as was previously unexpected in the hydrodynamic regime [241, 261].

This continuation was previously attributed to the presence of a quasi-condensate across

the phase transition [26].

In the 3D limit (Λ = 50), we expect for the sound speed to disappear across the tran-

sition. Therefore, one might expect an interesting behaviour in the nature of sound at the

phase transition in the dimensionality crossover. To verify this hypothesis, we perform

our dynamical procedure as in Section 5.5 for each value of dimensionality and tempera-

ture employed. In doing so, we are able to recover a global parameter-space relationship

between the sound speed across the phase transition and the system dimensionality. Dif-

ferently from Fig. 5.9, we henceforth normalise temperature to the numerically extracted

phase transition temperature as reported in Fig. 4.10(b). In Fig. 5.10 we plot the behaviour

of the sound across temperature for each considered dimensionality. Here we observe, for

values of dimensionality Λ > 1, a universality in the measured second sound speed as
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Figure 5.9: Sound speed normalised to the Bogoliubov sound speed is plotted in red, blue and
green as a function of Temperature. In each case, temperature is normalised to the analytical
BKT phase transition temperature TBKT as identified by Eq. (4.30). In green we plot the 2D
results reported in [161] which closely emulates the experiment of Ville et al [26]. In red we plot
the results published in [27], which use a more careful excitation protocol exciting the lowest modes
through a sinusoidal perturbation with errorbars to represent statistical uncertainty. In black we
plot the expected hydrodynamic result from [241]. In blue we plot our results as extracted from the
fitting function specified by Eq. (5.6) with vertical errorbars to reflect the 95% confidence interval;
they are globally of the same order as the marker size.

a function of temperature between the ranges 0.4Tc ≲ T ≲ 0.9Tc. Below this tempera-

ture, there are spurious results as one would expect when applying the high-temperature

SPGPE theory to low temperatures. We reiterate that specific low-temperature ensembles

have been removed where a coupling to transverse modes was manually detected. For low

values of Λ, larger sound speeds are reported close to the phase transition before a loss

of measurable sound due to overdamping across the phase transition. Most strikingly,

whereas Ville et al [26] measured a continuity across the phase transition, we report no

such behaviour. We surmise that this is due to the overdamped nature of the system be-

yond the phase transition temperature (Tc) which was identified by our systematic analysis

in Chapter 4 as opposed to the analytic BKT result (TBKT) of Eq. 4.30. As dimension-

ality increases, we see an overall decrease in the sound speed close to the transition and

116



Chapter 5. Characterisation of sound speed in the weakly interacting Bose gas through
the 2D-3D dimensionality crossover

again no evidence of continuity in the second sound at any Λ through the dimensionality

crossover. Moreover, we also report a distinct characteristic uptick in the second sound,

clearly visible in the inset plot of Fig. 5.10, just before the transition. To our knowledge,

this uptick remains unreported in the literature and highlights an interesting avenue of

inquiry for future work.
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Figure 5.10: Sound speed normalised by the zero temperature Bogoliubov sound speed for each con-
sidered dimensionality as a function of temperature. In this case, temperature has been normalised
to the numerically extracted phase transition temperature Tc. Vertical errorbars correspond to 95%
confidence intervals in the fitting function specified by Eq. 5.6. Horizontal errorbars correspond to
the uncertainty in numerically extracted value of transition temperature Tc as previously extracted
and plotted in Fig. 4.10. Inset plots the same data zoomed-in at the phase transition in order to
aid visibility.

As well as considering the second sound speed, we are able to track the level of damp-

ing in the system, as provided by the fitting parameter τ . The response of damping rate

117



Chapter 5. Characterisation of sound speed in the weakly interacting Bose gas through
the 2D-3D dimensionality crossover

to changes in dimensionality and temperature is reported in Fig. 5.11. For low dimen-

sionalities, we see a continuous and monotonic increase in the damping rate as we cross

the phase transition. As dimensionality increases, we see a sharper crossover into high

damping across the phase transition.
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Figure 5.11: Damping rate 1/τ for each considered dimensionality across temperature. Verti-
cal errorbars correspond to 95% confidence intervals in the fitting function specified by Eq. 5.6.
Horizontal errorbars correspond to the uncertainty in numerically extracted value of transition
temperature Tc as previously extracted and plotted in Fig. 4.10.

Lastly, we consider the quality factor Q for each of the fits we have considered and

plot this quantity in Fig. 5.12. The quality factor in each case of dimensionality decays

as a function of temperature, with a simultaneous collapse to order unity as the phase

transition is crossed. Lower values of dimensionality systematically have lower qualities,

and larger values systematically have higher qualities. Our analysis reveals that a mea-

surement of sound across the phase transition is infeasible due to the simultaneous sharp

increase in damping rate and fall in sound speed giving rise to a quality factor below

unity. This is in stark contrast to previous works, where a continuity in the sound across

the BKT phase transition was reported [26, 27]. It is our tentative view, that in this

case, the analytical BKT phase transition temperature used, as given by Eq. (4.30), is

systematically lower than the true phase transition temperature Tc for the given systems,
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Figure 5.12: Quality factor for each considered dimensionality across temperature. Vertical error-
bars correspond to 95% confidence intervals in the fitting function specified by Eq. 5.6. Horizontal
errorbars correspond to the uncertainty in numerically extracted value of transition temperature
Tc as previously extracted and plotted in Fig. 4.10.

leading to a misrepresentation of the crossing of the phase transition. This subtle shift

in the transition temperature gives the impression of sound propagating across the phase

transition, whereas in our analysis using Tc we observe a transition to overdamped be-

haviour exactly at the phase transition, leading to an immeasurable sound. This shows

that, even in heavily dimensionally suppressed systems, the effects of dimensionality need

to be carefully taken into account when interrogating systems across or close to the phase

transition.

5.7 Chapter conclusions

In this chapter we have investigated the effects of dimensionality on the behaviour of the

second sound through the phase transition. Our low-dimensional results are comparable

with those in a purely 2D system [26, 27] when we normalise via the analytic BKT tem-

perature. However, if instead we normalise to the numerically-extracted phase transition

temperature identified in Chapter 4, we report no propagation of sound across the tran-
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sition. In fact, we tentatively suggest that the analytic BKT formula used in previous

works provides a systematic underestimate of the true phase transition temperature. This

underestimate could lead to the mischaracterisation of sound close to the phase transition

and perhaps an unfounded identification of a continuous sound across it. With increasing

dimensionality we see a sound speed that is lower at the phase transition. In addition, we

report a slight uptick in the normalised second sound just prior to the transition which

is accentuated in, but not limited to, lower dimensionalities. This may indicate some

interesting physics occurring close to the phase transition that have been previously un-

explored. Moreover, the damping rate of the Bose gas in the hybridised trapping we

employ displays a clear transition in behaviour as dimensionality increases, suggesting a

fundamental change in the mechanism of energy dissipation as we move between the di-

mensional extremes. We also report a clear global increase in the measured quality factor

across dimensionality, where for each measured dimensionality the quality falls to unity

at the phase transition. Our work motivates further experimental forays into the nature

of the second sound for quasi-2D systems, with the caveat of careful consideration on the

effects of dimensionality.
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Thesis conclusions and further

work

General conclusions

We take this opportunity to compound the insights gathered from the work carried out

within this thesis. At a glance, we investigated the zero temperature Bose gas in confined

rough geometries. Here we found vortex reconnections were vital and inherently necessary

in the formation of the vortex lattice in the spin-up from a quiescent state. We then studied

the effects of dimensionality on the phase transition of a trapped Bose gas and found a

monotonic increase in transition temperature with a decrease in trapping frequency. Lastly

we investigated the effects of dimensionality on the sound propagation of a trapped Bose

gas. We measured no discontinuity in second sound across the phase transition for any

dimensionality we consider and instead a transition to overdamping occurring at the phase

transition.

Conclusions

In Chapter 1 we visited the theory of the Bose gas in different geometries and the phe-

nomenon of Bose-Einstein condensation. We explored the effects of dimensionality and the

more specific case of a rectangular box with transverse confinement. We then considered

the effect of atomic interactions which gave rise to the Gross-Pitaevskii equation before

focusing our investigation onto the rectangular box under transverse confinement with the

interactions considered. We went on to introduce the concept of quasi-condensation and

the response of the system under a weak perturbation. We then briefly visited Bogoliubov

theory and sound propagation as it relates to superfluid systems.

With the Gross-Pitaevskii theory introduced, Chapter 2 focuses this tool on the spe-

cific case of vortices inside a rough walled bucket potential. Here, we investigated the

often overlooked effects of a rough-walled potential in the spin-up of a quiescent system.

Despite the differences in scale between helium experiments and the system we consider,
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the relative lengthscales between system and vortex core are comparable. As such, we

investigated the effects of roughness on the bucket surface and found that this roughness

acts as a catalyst to bring vorticity into the system, acting to increase superfluid velocity in

localised pockets which give rise to the formation of vortex structures. These vortices then

grow in size, reconnecting with one another in a turbulent boundary layer before diffusing

into the bulk and ordering themselves into a vortex lattice structure. We considered the

effects of a localised protuberance and found that such a protuberance acts to localise the

generated vorticity in the initial spin-up, whilst ultimately bearing little effect on the final

lattice configuration. We considered the effects of a centralised remnant vortex present in

the initial state. For the case of a vortex possessing the polarity of the same circulation

as those generated by the rotation direction, there is little-to-no effect. However for the

case of a negative vortex, we measured an injection of extra vorticity in the system as

the superfluid velocity imposed by the central vortex acts to generate a bigger difference

in relative flow speed at the boundary. These extra vortices emerge into the bulk and

subsequently reconnect subsume the central vortex, dissolving it into vortex rings which

are then lost. The resultant vortex lattice state is one with a slightly larger number of final

vortices, an important consideration that could potentially be experimentally observed or

exploited. Lastly, we performed simulations on a larger grid in 2D where we observed a

faster timescale for crystallisation of the vortex lattice structure as well as an interesting

case of a Jones-Roberts soliton transforming into a vortex dipole pair. The findings of this

chapter have been published to Physical Review B [53].

In Chapter 3, we switch focus to consider the effects of finite temperature on a confined

Bose gas. We began by introducing the SPGPE theory, a C-field theory that accounts for a

thermal system in constant equilibrium with a surrounding thermal bath. We then discuss

how in practice, the simple growth SPGPE provides a simpler numerical implementation

and therefore motivate the reasons for choosing this theory. We go on to discuss the role

of the projection operator and the care that must be taken in choosing a cutoff value

within this theoretical framework. We then introduced the specific trapping geometry

employed in later sections of the thesis. We chose a trapping geometry that reduces to

the experimental configuration of Ville et al [26] in the 2D limit, but allows one to modify

the dimensionality towards 3D through a variation in the transverse harmonic trapping

strength. We later discuss subtleties of the SPGPE and the parameter choices we make

for our numerical investigation. In SPGPE theory, care must be taken to include the

contribution to the atomic density from atoms that have been cast out by the projection

operator, we spent some time deriving expressions for the incoherent atomic density in

the trapping employed.

In Chapter 4, we applied the theoretical tools introduced in the previous chapter to

perform a systematic analysis of the effects of dimensionality for the trapped Bose gas.
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We began this chapter by discussing the choice in chemical potential such that across

dimensionalities we can normalise either the atomic density or the Bogoliubov sound speed.

We then focused on the dimensional extremes of 2D and 3D, where one expects the BKT

and BEC phase transitions respectively. Here we found close agreement in phase transition

temperature with the analytic expressions, motivating further analysis in the dimensional

crossover. In the crossover, we instead introduce select equilibrium statistics utilised to

locate the phase transition in a systematic way across dimensionality. When applied to the

crossover we detected that a small difference in the harmonic trapping strength leads to

vast differences in the specific phase transition temperature, especially when close to the

2D limit. We also noticed a topological transition in the nature of vortices in our system

where vortices transitioned from point-like to filament-like as we move from 2D towards

3D. Our analysis reveals that for gases with similar densities, we always recover a critical

phase transition temperature that is lower in 2D than in 3D. The analysis performed

within this chapter was submitted and accepted to the Physical Review Research journal

and is due to be published shortly [192].

In Chapter 5, we modify our trapping geometry in order to investigate the propaga-

tion of sound across dimensionalities. Here we found close agreement with previous works

[26, 27] in the framework of a BKT phase transition temperature in the 2D limit. How-

ever, when temperature is normalised to a numerically-extracted transition temperature,

we found no continuity in the second sound speed across the phase transition. Instead a

characteristic transition to overdamping occurs at the numerically-extracted phase tran-

sition temperature. Meanwhile, at the 3D limit of our work, approximated by Λ = 50,

we find a similar behaviour in the sound, deviating towards a slightly lower speed at the

transition. Moreover, we find that the damping rate is also modified by the dimensionality

of the system. For tightly confined systems there is a globally higher damping rate and

a smoother increase in the rate as we approach the phase transition from below. In the

opposite dimensional limit, there is a very small change in damping across temperature up

until the phase transition. At this point, we measure a sharp increase in the damping rate.

This modification to the damping rate and sound speed across dimensionality corresponds

to an increasing quality factor for higher dimensional systems. In all cases, the quality

factor falls to an order of unity at the phase transition, corresponding to an overdamped

system from which one can no longer effectively measure the sound speed. The findings of

this chapter are preliminary and will form the basis of a paper exploring the sound speed

as a function of temperature through the dimensionality crossover from 2D to 3D.
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Further work

This thesis largely focused on the response of a weakly-interacting Bose gas to novel

trapping geometries, exploring in particular microscopic roughness and dimensionality

crossovers. A series of highly-efficient dedicated numerical tools have been developed

and implemented. These may be applied to a multitude of various systems, allowing an

exploration of a variety of trapping geometries. For example, the hybrid basis techniques

we utilised could easily be adapted to study dimensionality crossovers from 3D to 1D.

This would provide a greater understanding of the effects of dimensionality on the phase

transition of the trapped Bose gas. Future work could take numerous directions and so we

break potential avenues down into work naturally extending the two parts of this thesis

on the zero temperature and finite temperature Bose gas respectively.

Zero temperature

Using the insights from Part I, we could explore the effects of a more accurate model

for superfluid helium, where the strong nonlocal interactions, inducing a roton minimum,

may cause a significant deviation from the results we observed here in Chapter 2. While

this is absent from the GPE model we employed, it can be simply introduced through an

additional non-local term [123, 124].

Another potential avenue for further work is through a dipolar interaction term. In

dipolar Bose gases [262, 263], one could use the long-range anisotropic interaction to stir

[264, 265] the superfluid in a direction perpendicular to the rotating frame we employed.

This interplay between rotation mechanisms would generate competition on the alignment

of the vortex lattice. This would certainly lead to interesting dynamics and could be a

novel approach to study quantum turbulence [266, 267] in dipolar gases.

In a different vein, and in analogue to recent numerical experiments which emulate

classical fluid instabilities such as that of Baggaley et al [268]; we could harness roughness

to act as a semi-slipping boundary layer to study a superfluid analogue of Plane-Couette

flow [269, 270]. By mapping the summation of Fourier modes to a top and bottom plate

and translating the surface features on just a single plate, one could effectively realise

the Plane-Couette channel flow. It would be interesting to observe whether the quantised

vorticity inherent to superfluids causes a significant alteration to the classical result.

Finite temperature

The hybridised basis SPGPE we developed for use in Part II of this thesis forms an excel-

lent foundation for the study of dimensionality. Whilst we investigated the dimensional

crossover, one could also consider dimensional quenches. For instance, the dynamical

properties of a system are likely to change with a sudden or gradual change in the system
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dimensionality. One would expect fascinating behaviour of vortices and their topology

through a dimensional quench as they would likely transition from point-like to filament-

like, or vice versa. One could also explore temperature quenches [151, 271, 272] across the

dimensional crossover. Here, the topology and dimensionality of the system trapping may

significantly alter the number [273] and type of vortices generated through a Bose-Einstein

condensation.Temperature quenches of the trapped Bose gas have already been numeri-

cally [69, 274] and experimentally [5, 275] investigated in harmonically-confined systems,

so this work is well motivated.

We could also explore the effects of a dipolar interaction term within the finite tem-

perature SPGPE formalism, as has been previously introduced by Bland et al [133]. The

anisotropic dipolar interaction term is likely to affect the critical temperature of the phase

transition, and so revisiting Chapter 4 with consideration for dipolar gases would provide

fruitful insights. Not only this, but the excitation spectrum exhibiting a roton minimum

is likely to significantly alter the propagation of sound, forming a natural extension of our

work in Chapter 5.

Lastly, we highlight the possibility of extending our work to model the behaviour

of mixtures or spin-orbit coupled Bose gases. With coherent coupling between species,

the possibility to explore exotic phenomena such as quantum droplets [276], magnetic

solitons [277] and even analogue gravity [278, 279] becomes feasible. An application of our

numerical techniques to explore the role of dimensionality in each of these contexts would

certainly reveal important and fascinating insights.

125



Appendices

126



Appendix A

Density of states across geometries

It is crucial within the SPGPE framework to consider the effects of particles above the

cutoff energy Ecut when calculating observables. Here we outline how one might compute

such effects for a number of common trapping configurations. Let us begin by considering

a particle in a potential V , which represents a potential well with minimum V = 0. Choose

V such that all the available states are bound states and the spectrum is discrete. Count

the number of states up to an energy E and call it NE . If E is much larger than the typical

spacing between states, then one can define the number of states within an interval from

E to E + dE as the quantity

dNE =
dNE

dE
dE (A.1)

where the derivative has the meaning of number of state per unit energy, or density of

state:

g(E) =
dNE

dE
(A.2)

which is a continuous function in the limit of a dense spectrum. In the same limit one can

write

NE =

( E

Emin

dE′ g(E′) , (A.3)

where Emin is the lowest value of energy for which g(E) ∕= 0. If a gas of noninteracting

particles, in the same potential V , behaves in such a way that the population of the energy

levels is determined by a function f(E), then the number of particles which occupy states

above a certain energy Ecut is given by

N =

( ∞

Ecut

dE g(E)f(E) . (A.4)

In the SPGPE framework, particles above the energy cutoff $cut are assumed to be ideal and

distributed according to Maxwell-Boltzmann statistics, and so the distribution function is
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just

f(E) =
10

e(E−µ)/kBT − 1
1 . (A.5)

Note that sometimes the density of states is defined as (1/V)dNE/dE, where V is the

volume of the system. This is useful if one wants to calculate the energy density (energy

per unit volume), but this is not what we consider here.

A.1 Particle in a square box in two-dimensions

Consider a particle of mass m in an infinite two-dimensional square box of length L. The

spectrum is

Enx,ny =
!2

2m
(k2x + k2y) =

π2!2

2mL2
(n2

x + n2
y) , (A.6)

with nx and ny positive integers. Let us count the number of states with Enx,ny ≤ E,

for a given E. In the space defined by the quantum numbers nx and ny, the condition

Enx,ny = E corresponds to a quarter of a circumference of radius r =
!
2mL2E/π2!2 and

the states satisfying the condition Enx,ny ≤ E are those within the corresponding quarter

of a circle. Since there is one state per unit area, the number of states is approximately

given by a quarter of the area of the circle. This approximation becomes exact when the

radius is large, that is, when E is much larger than the typical scale π2!2/2mL2. This

implies

NE =
1

4
πr2 =

mL2E

2π!2
, (A.7)

from which one obtains

g(E) =
dNE

dE
=

mL2

2π!2
. (A.8)

A.2 Particle in a rectangular box in two-dimensions

Proceeding as before, but with lengths Lx and Ly in the x and y directions respectively.

The spectrum is

Enx,ny =
!2

2m
(k2x + k2y) =

π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
, (A.9)

In the space defined by the quantum numbers nx and ny, the condition Enx,ny = E now

corresponds to an ellipse:
n2
x

L2
x

+
n2
y

L2
y

=
2mE

π2!2
. (A.10)
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The states satisfying the condition Enx,ny ≤ E are those within a quarter of an ellipse

with semiaxes

a =

2
2mL2

xE

π2!2
and b =

"
2mL2

yE

π2!2
. (A.11)

Again there is a state per unit area, so that the number of states is

NE =
1

4
πab =

mLxLyE

2π!2
, (A.12)

from which one obtains

g(E) =
dNE

dE
=

mLxLy

2π!2
. (A.13)

A.3 Particle in a square box in three dimensions

In a 3D box of size L, the spectrum is

Enx,ny ,nz =
!2

2m
(k2x + k2y + k2z) =

π2!2

2mL2
(n2

x + n2
y + n2

z) , (A.14)

with nx, ny and nz positive integers. Let us count the number of states with Enx,ny ,nz ≤ E,

for a given E. In the space defined by the quantum numbers nx, ny and nz, the condition

Enx,ny ,nz = E corresponds to an octant of radius r =
!
2mL2E/π2!2 and the states

satisfying the condition Enx,ny ,nz ≤ E are those within the corresponding octant. Since

there is one state per unit volume, the number of states is approximately given by the

volume of the octant:

NE =
1

8

4πr3

3
=

π

6

&
2mL2E

π2!2

'3/2

, (A.15)

from which one obtains

g(E) =
dNE

dE
=

π

4

&
2mL2

π2!2

'3/2

E1/2 , (A.16)

or

g(E) =
mL3

2π2!3
√
2mE . (A.17)
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A.4 Harmonic trap in three dimensions

A particle in a harmonic potential with frequencies ωx, ωy and ωz has the spectrum

Enx,ny ,nz =

&
nx +

1

2

'
!ωx +

&
ny +

1

2

'
!ωy +

&
nz +

1

2

'
!ωz , (A.18)

where again nx, ny and nz are positive integers. Since we are interested in the spectrum

for large values of E, we can ignore the zero-point energies !ω/2, which become irrelevant

if the quantum numbers are large. Hence we can write

Enx,ny ,nz = nx!ωx + ny!ωy + nz!ωz . (A.19)

In the space defined by the quantum numbers nx, ny and nz, the condition Enx,ny ,nz ≤ E

corresponds to the volume bounded from above by the planar surface having vertices on

the axes in ñx = E/!ωx, ñy = E/!ωy, and ñz = E/!ωz. The volume of such a region

can be easily calculated, for instance, by integrating in dnz (taking nz as a continuous

variable), from 0 to ñz, the area of the triangle formed by the boundaries at fixed nz. The

result is

NE =
1

6
ñxñyñz =

1

6

E3

!3ωxωyωz
, (A.20)

from which one obtains

g(E) =
E2

2(!ωho)3
, (A.21)

where ωho = (ωxωyωz)
1/3 is the geometric average of the trapping frequencies.

A.5 Square box with transverse harmonic potential

Consider a particle confined in a square box of size L along x and y and subject to a

harmonic potential of frequency ωz in the z direction. The spectrum is

Enx,ny ,nz =
π2!2

2mL2
(n2

x + n2
y) +

&
nz +

1

2

'
!ωz , (A.22)

where nx, ny are nz are positive integers. Let us assume that all of them are much greater

than 1. Thus we can neglect the zero-point energy in the last term and write

Enx,ny ,nz =
π2!2

2mL2
(n2

x + n2
y) + nz!ωz . (A.23)

In the space defined by the quantum numbers nx, ny and nz, the condition Enx,ny ,nz ≤ E

corresponds to the volume contained in the paraboloid of revolution which is obtained by
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taking the parabola

nz =
E

!ωz
− π2!

2mωzL2
n2
x , (A.24)

in the nx-nz plane and rotating it around the nz axis in the region where nx, ny are nz are

positive. This corresponds to a quarter of the volume contained in a circular paraboloid

of depth D = E
!ωz

and radius of the rim r =
!
2mL2E/π2!2, so that

NE =
1

4

π

2
r2D =

π

8

2mL2E

π2!2
E

!ωz
=

mL2E2

4π!3ωz
, (A.25)

from which one obtains

g(E) =
mL2E

2π!3ωz
. (A.26)

A.6 Rectangular box with transverse harmonic potential

For the case of the rectangular box with transverse harmonic confinement, we make a more

detailed approach. Consider a gas of noninteracting bosons confined in a rectangular box

of size Lx along x and Ly along y and subject to a harmonic potential of frequency ωz in

the z direction. The energy spectrum is given by

E =
π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
+

&
nz +

1

2

'
!ωz , (A.27)

where the quantum numbers are integers, with nx, ny > 1 and nz ≥ 0. At a given

temperature T the mean occupation number of the energy states is given by the Bose-

Einstein distribution

〈nE〉 =
1

exp[(E − µ)/kBT ]− 1
, (A.28)

where µ is the chemical potential of the gas, which cannot be larger than the lowest

energy in the spectrum. When it approaches this value, the occupation of the state with

n = (1, 1, 0) diverges. Let us call N0 the occupation of this state and write the total

particle number N as

N = N0 +NT = N0 +
#

n

′ 1

exp[(E − µ)/kBT ]− 1
, (A.29)

where the sum is over all states except the lowest one.

The spacing between the energy levels is about !2/(2mL2
x) and !2/(2mL2

y) for states

characterised by different planar wave vectors, and !ωz for different states of the transverse

harmonic oscillator. If kBT is much larger than all these quantities, then the spectrum
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can be considered as a continuum and the sums over the discrete index n can be replaced

with integrals over the energy E. Hence, the total number of atoms becomes

N = N0 +

( ∞

Emin

dE
g(E)

exp[(E − µ)/kBT ]− 1
, (A.30)

where Emin is the lowest value of energy for which g(E) ∕= 0. In our case, Emin = !ωz/2.

Let us define the shifted energy

Ẽn = E − 1

2
!ωz =

π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
+ nz!ωz , (A.31)

and the shifted chemical potential µ̃ = µ− (1/2)!ωz, so that

N = N0 +

( ∞

0
dẼ

g(Ẽ)

exp[(Ẽ − µ̃)/kBT ]− 1
. (A.32)

In order to calculate the density of states one can explicitly count the states up to a

given energy Ẽ and then take the derivative of this number with respect to Ẽ. In the space

defined by the quantum numbers nx, ny and nz, where there is one state per unit volume,

the condition Ẽn ≤ Ẽ corresponds to the volume contained in the elliptic paraboloid which

has a depth D = Ẽ/!ωz and whose rim is an ellipse defined by the equation

n2
x

L2
x

+
n2
y

L2
y

=
2mẼ

!2
(A.33)

with semiaxes

a =

"
2mL2

xẼ

!2
and b =

"
2mL2

yẼ

!2
. (A.34)

The volume containing the states below Ẽ is a quarter of the volume of the paraboloid,

so that

NẼ =
1

4

π

2
abD =

π

8

2mLxLyẼ

π2!2
Ẽ

!ωz
=

mLxLyẼ
2

4π!3ωz
. (A.35)

Then, by taking the derivative, one obtains

g(Ẽ) =
mLxLyẼ

2π!3ωz
. (A.36)

It is worth noticing that the density of states in our hybrid trap turns out to be equal

to the density of states of a purely 2D rectangular box as given by Eq. (A.13) (which

does not depend on the energy), multiplied by the number of transverse states below the

energy Ẽ, which is Ẽ/!ωz. Note that this hybrid box-harmonic potential has three typical
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energy scales: the two scales associated to the box, !2/(2mL2
x) and !2/(2mL2

y) and the

one associated to the transverse harmonic confinement, !ωz. The result Eq. (A.26) is valid

if E is much larger than all of them. In this case, the density of states turns out to be

equal to the density of states of a 2D rectangular box, as in Eq. (A.13), times the number

of transverse states within the energy E, which is E/!ωz. This follows from the fact that,

for each nz, there exists a dense set of planar waves with different kx and kz, and all those

sets (whose wave functions can be distinguished by the number of nodes in the z direction)

equally contribute to the density of states.

Care must be taken in cases where the transverse confinement is tight and the relevant

range of energy E is of the order of !ωz or even smaller. In this situation, only one or a

few values of nz have to be considered, the zero-point energy cannot be ignored, and the

transverse spectrum cannot be approximated with a continuum. Let us rewrite the energy

spectrum given by Eq. (A.27) in the form

Enx,ny ,nz −
!ωz

2
=

π2!2

2m

.
n2
x

L2
x

+
n2
y

L2
y

/
+ nz!ωz , (A.37)

Now we remember (from the solution of the Schrödinger equation) that the lowest value

of the integers nx and ny is 1, while the lowest value of the quantum number nz of the

harmonic potential is 0. This means that the lowest energy in the spectrum is !ωz/2

plus either π2!2/2mL2
x or π2!2/2mL2

y depending on which length is larger between Lx

and Ly. Let us suppose that both are much larger than the transverse harmonic length

ℓz =
!
!/mωz, which is equivalent to say that the spectrum of the planar states is dense on

the energy scale !ωz. This means that g(E) is a staircase function, with a step every !ωz

starting from the zero-point energy. In the extreme case where !ωz is much larger than any

other energy scale, only planar waves with no transverse nodes are allowed and the density

of state is the one of a purely 2D box Eq. (A.13). In the opposite limit, where !ωz is small,

the steps themselves become dense, and g(E) appears to increase linearly with E as in

Eq. (A.26). Finally, note that, in the intermediate case where g(E) has a staircase shape,

a gas of noninteracting particles with distribution function f(E) (either Bose-Einstein

or Boltzmann) is expected to have an energy density Eg(E)f(E) with sharp maxima

whenever E = (nx + 1/2)!ωz. Correspondingly, the momentum distribution should also

exhibits spikes.
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Hybrid basis SPGPE

In this appendix chapter we discuss numerical details pertaining to the simulation of

the SPGPE as presented in the latter part of this thesis. We begin by discussing the

protocol for independent stochastic realisations for our parameters of choice and go on

to discuss the hybrid-basis formulation of the SPGPE we utilise. We then present how

this is implemented upon Graphical Processing Units (GPUs) to achieve vast numerical

speedup in our calculations and the specific algorithm for propagation of the wavefunction.

Numerics and visualisation of the SPGPE are performed using Julia [280–282], whereby

we utilise CUDA to offload calculations to a graphical processing unit (GPU) through the

use of a parallelised stencil.

B.1 System preparation

To prepare equilibrium configurations for each value of Λ and temperature, we evolve

the system dynamically from a zero-field initial condition for a time t ∼ 500τγ , where

τγ = !/µγ. Evolving from initial condition ψ(r) = 0, with a random realisation of the

initial noisy field η(r) is akin to an initial condition where all atoms possess initial energy

larger than the cutoff energy $cut. These will then enter the coherent region at a rate

governed by γ, which describes the collisional rate between atoms, until the gas reaches

thermal equilibrium. Throughout this work we employ a value γ = 0.05 as a reasonable

estimate for our system, noting that similar values have been used in previous SPGPE

simulations [27, 28, 161, 191]; nonetheless, we stress that the precise value of γ is not

relevant for the present work, as it determines the rate at which the system relaxes to

equilibrium, but has little effect on the properties of the system once equilibrium is reached.

We consider our simulations to be in thermal equilibrium once the number of C-field atoms

NC and the number of atoms in the condensate mode N0 has stabilised with minimal phase

fluctuations. As can be seen in Figure B.1, the C-field, has been evolved for long enough
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Figure B.1: (a) C-field number of atoms NC for a single realisation at Λ = 5 from zero-field to
equilibrium. At select points t ≈ 5τγ , 25τγ , 180τγ , 500τγ highlighted with red, green, magenta
and orange markers respectively we visualise the density and phase profile concurrently using
transparency and colour on the z = 0 plane in a panel bordered by the same colour. In subplot
(b) we track the number of vortices Nv in this plane at early times.

such that all vortices have been annihilated and the system has a global phase coherence.

To obtain distinct/independent realisations at fixed Λ and T for our subsequent stochastic

analysis, we then propagate such equilibrium solution further in time with Eq. (3.21),

sampling an additional realisation every ∼ 10τγ . Such a procedure is justified under the

ergodic principle, within which the time average over the evolution of a single system

at equilibrium is indiscernible from the ensemble average over many different systems

[283, 284]. This procedure is well adopted in the literature [127, 151, 229, 285, 286] and

provides a significant speed-up in the generation of distinct equilibrium configurations for

a given system. For a given Λ, we prepare between N = 50 − 100 realisations for each

probed temperature T in 10nK increments from 10nk up to 300nk. This procedure gives a

thermal resolution of ±5nK in identifying critical behaviour of the phase transition across

the range of Λ we consider. A schematic of the procedure is presented in Fig. B.2. This

entire procedure is completed twice, once for the simple choice of chemical potential as

given by Eq. (4.1), and then again for the interpolated value which is justified in Section 4.3,

based on the zero temperature sound speed in the dimensional extremes.
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Ψ0(r, 0) = 0 Ψeq(r, 500τγ)

Ψ1(r, 510τγ)Ψ2(r, 520τγ)Ψ3(r, 530τγ)ΨN (r, (500 + 10N)τγ)

Ψ1(r, 535τγ)Ψ2(r, 545τγ)Ψ3(r, 555τγ)ΨN (r, (500 + 35N)τγ)

Ψ1(r, 535τγ + t̂)Ψ2(r, 545τγ + t̂)Ψ3(r, 555τγ + t̂)ΨN (r, (500 + 35N)τγ + t̂)

10τγ10τγ· · ·

· · ·

· · ·

Excitation added

Excitation removed, γ = 0

Propagate for 10τγ

Propagate for 25τγ

Propagate for 200ms

Propagate for 500τγ

Figure B.2: Complete simulation procedure to generate N stochastic realisations of the SPGPE
at a given dimensionality Λ and temperature T . We begin with a zero-field condition Ψ0(r, 0) = 0
and equilibrate for multiple relaxation time centuries to ensure full equilibration has been reached
and extract the equilibrium wavefunction Ψeq. Under the assumption of ergodicity, we can then
continually propagate the wavefunction and take samples every 10τγ . This allows us to collect
independent realisations to average over whilst not having to propagate every solution from the
zero field. For the equilibrium portion of this work we need not continue further. However, for
Chapter 5 on sound, we then take the diverged equilibrium configurations and propagate for a
further 25τγ in the presence of a small-amplitude sinusoidal excitation along x. We then remove
dissipation and noise by setting γ = 0 and run for a final t̂ = 200ms, collecting 500 samples of the
integrated profile along the x-direction for each realisation.

B.2 Hybrid basis

To solve the SPGPE for the considered box-harmonic hybrid potential, Eq. (3.19), we

adopt a novel hybrid basis composed of plane waves along the x and y axes and the har-

monic oscillator basis along the z axis. Since the SPGPE simulations are time consuming,

we prefer to make the calculations faster by implementing efficient Fourier and inverse

Fourier transformations in the xy-plane. This requires the use of periodic boundary con-

ditions. We thus embed the physical Lx × Ly box into a slightly larger auxiliary Lx × Ly

box. The potential outside the physical box is taken to be very large (decades larger than

the chemical potential) so that the density is negligible in that region. Periodic boundary

conditions are then safely applied to the auxiliary box, with no effect on the physical box

due to its embedding within a region of negligible density. Typically numerical simula-

tions are conducted entirely in a plane-wave or harmonic oscillator; to our knowledge this

is the first implementation of a mixed basis SPGPE solver in the current literature. The

SPGPE is numerically solved in its dimensionless form in which the physical quantities
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and variables are scaled by reference length, energy and times scales, lref , !ωref and ω−1
ref ,

respectively, according to their dimensions, and in the following the dimensionless quan-

tities and variables are denoted by prime notation. The C-field is expanded in the hybrid

basis

Ψ ′(r′, t′) =
#

εpqn≤!′cut

A′
pqn(t

′)φp(x
′)φ′

q(y
′)ϕ′

n(z
′) (B.1)

where the dimensionless single-particle energies are

$′pqn = 2π2

5
p2

L′2
x

+
q2

L′2
y

6
+

1

Λ

&
n+

1

2

'
. (B.2)

The wavefunctions are

φ′
p(x

′) = (1/
!

L′
x) exp(i2πpx

′/L′
x) (B.3)

φ′
q(y

′) = (1/
I

L′
y) exp(i2πqy

′/L′
y) (B.4)

ϕ′
n(z

′) =
Λ−1/4

√
2nn!π1/4

Hn

&
z′√
Λ

'
e−z′2/2Λ (B.5)

where Hn are the Hermite polynomials and p, q, n are integer quantum numbers with

p, q ≥ 1 and n ≥ 0. This hybrid basis satisfies the eigen-equation

5
−∇′2

2
+

1

2Λ2
z′2

6
φp(x

′)φ′
q(y

′)ϕ′
n(z

′) = ε′pqnφp(x
′)φ′

q(y
′)ϕ′

n(z
′) (B.6)

and forms a complete set obeying the orthogonality condition

(
dr φ∗

p′(x)φ
∗
q′(y)ϕ

∗
n′(z)φp(x)φq(y)ϕn(z) = δpp′δqq′δnn′ . (B.7)

The amplitude of each mode in the C-field can be expressed in the form

A′
pqn(t

′) =

(
dr′φ′∗

p (x)φ
′∗
q (y)ϕ

′∗
n (z)Ψ

′(r′, t′) ≡ Fx,p

5
Fy,q

3
Hz,n

:
Ψ ′(r′, t′)

;46
(B.8)

where Fx,p and Fy,q denote the Fourier transform and Hz,n is the Hermite transformation.

We remark here that these transforms are permutable due to the orthogonality of the

utilised basis. The corresponding inverse transformation is

Ψ ′(r′, t′) =
#

p,q,n

F−1
x,p

5
F−1
y,q

3
H−1

z,n

:
A′

pqn(t
′)
;46

. (B.9)

The Fourier and inverse Fourier transformation can be straightforwardly computed by fast

Fourier transformation with homogeneous grids along x and y axes. The Hermite trans-
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formation can be computed with the Hermite-Gaussian quadrature, a form of Gaussian

quadrature for approximating the value of integrals by a summation with n points, given

by (
dz′e−z′2f(z′) ≈

nmax#

i=1

wi,nf(αi), (B.10)

where

wi,n =
2n−1n!

√
π

n2[Hnmax−1(αi)]2
(B.11)

are roots of the Hermite polynomial Hnmax(αi), for i = 1, 2 ..., n [127, 287]. In or-

der to compute the Hermite transformation accurately, the grid is set by αi and is not

homogeneous along the z-axis. Then we can write

Hz,n

:
Ψ ′(r′, t′)

;
=

#

i

wi,n
Λ1/4Hn(αi)√

2nn!π1/4
eα

2
iΨ(x′, y′,αi, t

′), (B.12)

and this can be numerically implemented through a matrix multiplication such that

Hz,n[Ψ
′(r′, t′)] = QΨ(x′, y′,α′

i, t
′), (B.13)

where Q is a block-diagonal matrix specified by Eq. (B.18). The inverse Hermite trans-

formation is the product of the basis weight and the n-th harmonic basis,

H−1
z,n

:
A′

pqn(t
′)
;
= A′

pqn(t
′)ϕ′

n(z
′) . (B.14)

During the SPGPE evolution addressed below, the z-position grid is set by the roots

of the Hermite polynomial with nmax = 300 in all our simulations. Besides, it is worth

noting that unlike the Hermite transformation, one can reconstruct the wave function with

arbitrary spatial resolution from the inverse transformation with the knowledge of A′
pqn,

and thus it will allow us to visualise the data with finer grid spacing in z′.

The equation of motion of the basis amplitude A′
pqn for ε′pqn ≤ ε′cut can be obtained

by the SPGPE

i
∂

∂t′
A′

pqn(t
′) = (1− iγ)

:
ε′pqn + P[G′

pqn]− µ′;A′
pqn(t) + η̃′pqn(t

′)

where

G′
pqn(t

′) = Fx,p

5
Fy,q

3
Hz,n

:
V ′(x′, y′) + g′

HHΨ ′(r′, t′)
HH2 Ψ ′(r′, t′)

;46

is the combination of external box potential and the nonlinear term. Here, we introduced

g′ = 4πas/lref as the dimensionless interaction strength. Meanwhile the complex white
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noise follows the correlation relation

8
η̃′∗ijk(t

′′)η̃′pqr(t
′)
9
= 2γ

kBT

!ωref
δ(t′ − t′′)δpiδqjδnk (B.15)

only for modes below the cutoff. The projector limits the modes evolved in the dynamic

for modes satisfying ε′pqn ≤ ε′cut while higher modes could be created during the s-wave

collision.

B.3 Utilisation of GPUs

When running stochastic simulations of 3D partial differential equations, one needs to find

a delicate balance between generating enough trajectories for strong convergence whilst

simultaneously minimising the scope of the project in terms of memory and computational

runtime. The nature and scope of this project requires the running and storing of hun-

dreds of thousands of 3D wavefunctions, thus we are met with a problem of having our

simulations finish within a reasonable timeframe and storing data in a limited system. To

address the former of these issues, we turn to graphical processing units (GPUs). These

were originally designed to perform low-cost computational operations across many pixels

simultaneously for use in computer graphics. Fortuitously, recent advances in software

have allowed the use of GPUs for general-purpose programming. The mass-parallelisation

of low-power compute provided by GPUs compared to the centralised high-power compute

provided by CPUs can be summarised by the adage: Would you rather plow a field with

two oxen, or a thousand chickens?. Of course, this prompts several responses, the most

important of which is: How big is the field? In the context of compute, this corresponds to

whether the time saved by developing code to speed-up calculations through GPU (coordi-

nating chickens) is worth the time lost by simply using a CPU code (using oxen). For our

case, we report a ∼ 10× speedup when utilising GPUs, which is overwhelmingly worth-

while. This project utilised NVidia Tesla V100 GPUs to offload calculations for a vast

speed-up in computational speed. As a summary, this involved casting all arrays onto the

GPU memory and propagating the solution there, before casting it back over to the CPU

for data analysis. Whilst GPUs are efficient at performing distributed low-cost operations

within their memory, they are comparatively slow in the transfer of data between system

and device. As such, it is highly advantageous to cast the equation over to the device and

keep it there for the duration of the simulation, minimising data transfer. This remains

feasible if matrices are small enough to reside in video memory, known as VRAM. For

the GPUs which we had access to for the duration of this project, we may store matrices

that reside within 16GB of memory. Unfortunately, for the highly dimensional (Λ = 50)

high temperature simulations we overwhelm the VRAM and instead require a number of
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different algorithms to perform the same task, dependent on the size of the problem. The

basis amplitude matrix A′
pqn and its inverse are generated through block diagonal sparse

matrices which act upon the column-vectorised C-field wavefunction of the form

Q =

nxny columns
L MN O@

PPPPA

Q̂n,i 0 · · · 0

0 Q̂n,i · · · 0
...

...
. . .

...

0 0 · · · Q̂n,i

B

QQQQC

R
SSSST

SSSSU

n
x n

y
row

s

, Q−1 =

nxny columns
L MN O@

PPPPA

Q̂−1
i,n 0 · · · 0

0 Q̂−1
i,n · · · 0

...
...

. . .
...

0 0 · · · Q̂−1
i,n

B

QQQQC

R
SSSST

SSSSU

n
x n

y
row

s

(B.16)

where Q̂n,i and Q̂−1
i.n are themselves matrices of size (nh

z , n
h
z ), with nh

z as the number of

points in Hermite space along the transverse direction, selected via

nh
z = max

&
2$cutΛ− !ωref

2!ωref
, 11

'
. (B.17)

A minimum value of 11 grid points is used to prevent numerical issues from the nonlinear

term of the SPGPE in the 2D limit where nh
z ∼ 1. Specifically, Q̂n,i and Q̂−1

i.n can be

thought of as matrices which transform between the spatial-domain and quantum number

domain forwards and backwards respectively. They can be defined as

Q̂n,i =
√
Λ

"

####$

w1,1h1(α1)e
α2

1/2 w1,2h1(α2)e
α2

2/2 · · · w1,nmax
h1(αnmax

)eα
2
nmax

/2

w2,1h2(α1)e
α2

1/2 w2,2h2(α2)e
α2

2/2 · · · w2,nmax
h2(αnmax

)eα
2
nmax

/2

...
...

. . .
...

wnmax,1hnmax(α1)e
α2

1/2 wnmax,2hnmax(α2)e
α2

2/2 · · · wnmax,nmaxhnmax(αnmax)e
α2

nmax
/2

%

&&&&'

(B.18)

where hn(z
′) = Hn(z

′)/(
√
2nn!π1/4) is the normalised Hermite polynomial and

Q̂−1
i,n =

@

PPPPA

ϕ′
0(α1) ϕ′

1(α1) · · · ϕ′
nmax

(α1)

ϕ′
0(α2) ϕ′

1(α2) · · · ϕ′
nmax

(α2)
...

...
. . .

...

ϕ′
0(αnmax) ϕ′

1(αnmax) · · · ϕ′
nmax

(αnmax)

B

QQQQC
, (B.19)

respectively. In fact, we can write

Q̂n,iψ̀
(pqi) = Á(pqn) (B.20)

Q̂−1
i,nÁ(pqn) = ψ̀(pqi). (B.21)
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where ψ̀(pqi) and Á(pqn) are column-vectorised ψ′(αi) in real space and A′
pqn in energy

space respectively. By definition, the relation

Q̂n,iQ̂
−1
i,n = Q̂−1

i,nQ̂n,i = Î (B.22)

should always hold. If the total Hermite grid size nx × ny × nh
z becomes too large, we are

no longer able to fit the matrices of Eq. (B.18) and Eq. (B.19) inside the GPU memory.

In this event, we can store either or both of these matrices in system memory instead and

transfer the wavefunction from GPU to CPU when we need these matrices to act upon

it. In the context of memory, the hybridised basis we employ greatly aids on the memory

footprint of our project. Since, without loss of information, we can arbitrarily choose

the number of transverse homogeneous grid points nmax when transferring back and forth

between real space and the hybrid basis. As such, we store all data in the hybrid basis

with a total memory footprint of approximately 10 Terabytes.

B.4 Fourth order Runge-Kutta numerical integration

The numerical integration of both the GPE and SPGPE performed in this thesis employ

the use of the Runge-Kutta fourth order algorithm (for a detailed derivation, see [55,

§A.2]). Consider the partial differential equation described by

∂ψ

∂t
= f(ψ, t). (B.23)

To propagate the equation forward by a step dt > 0, and generate ψ(tn) = ψn we calculate

the quantities

k1 = f(tn,ψn), (B.24a)

k2 = f(tn +
dt

2
,ψn +

k1
2
), (B.24b)

k3 = f(tn +
dt

2
,ψn +

k2
2
), (B.24c)

k4 = f(tn + dt,ψn + k3), (B.24d)

which are then used to propagate the solution forward one timestep such that

ψn+1 = dt

&
ψn +

k1
6

+
k2
3

+
k3
3

+
k4
4

'
+O(dt5). (B.25)

For simulations of the GPE in Chapter 2, we employ a fixed step size of dt = 0.01 in

dimensionless time units, whereas for the SPGPE simulations of Chapter 4 and Chapter 5

we utilise a time step which varies across dimensionalities but is typically dt ∼ dxdyΛ/2.
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[182] S. J. Rooney, A. J. Allen, U. Zülicke, N. P. Proukakis, and A. S. Bradley, Phys.

Rev. A 93, 063603 (2016), URL https://link.aps.org/doi/10.1103/PhysRevA.

93.063603.

[183] I. Bouchoule, S. S. Szigeti, M. J. Davis, and K. V. Kheruntsyan, Phys. Rev. A 94,

051602 (2016), URL https://link.aps.org/doi/10.1103/PhysRevA.94.051602.

[184] I.-K. Liu, R. W. Pattinson, T. P. Billam, S. A. Gardiner, S. L. Cornish, T.-M. Huang,

W.-W. Lin, S.-C. Gou, N. G. Parker, and N. P. Proukakis, Phys. Rev. A 93, 023628

(2016), URL https://link.aps.org/doi/10.1103/PhysRevA.93.023628.

[185] S. A. Simmons, F. A. Bayocboc, J. C. Pillay, D. Colas, I. P. McCulloch, and K. V.

Kheruntsyan, Phys. Rev. Lett. 125, 180401 (2020), URL https://link.aps.org/

doi/10.1103/PhysRevLett.125.180401.

155

https://doi.org/10.1088/1361-6455/aa6888
https://link.aps.org/doi/10.1103/PhysRevLett.110.215302
https://link.aps.org/doi/10.1103/PhysRevA.84.023637
https://link.aps.org/doi/10.1103/PhysRevLett.111.235301
https://link.aps.org/doi/10.1103/PhysRevLett.110.104501
https://link.aps.org/doi/10.1103/PhysRevE.89.013302
https://link.aps.org/doi/10.1103/PhysRevA.90.053605
https://link.aps.org/doi/10.1103/PhysRevA.92.033616
https://link.aps.org/doi/10.1103/PhysRevA.93.063603
https://link.aps.org/doi/10.1103/PhysRevA.94.051602
https://link.aps.org/doi/10.1103/PhysRevA.93.023628
https://link.aps.org/doi/10.1103/PhysRevLett.125.180401


Bibliography

[186] A. J. Groszek, M. J. Davis, and T. P. Simula, SciPost Phys. 8, 39 (2020), URL

https://scipost.org/10.21468/SciPostPhys.8.3.039.

[187] C. N. Weiler, T. W. Neely, D. R. Scherer, A. S. Bradley, M. J. Davis, and B. P.

Anderson, Nature 455, 948 (2008), URL https://doi.org/10.1038/nature07334.

[188] S. J. Rooney, T. W. Neely, B. P. Anderson, and A. S. Bradley, Phys. Rev. A 88,

063620 (2013), URL https://link.aps.org/doi/10.1103/PhysRevA.88.063620.

[189] S. P. Cockburn, A. Negretti, N. P. Proukakis, and C. Henkel, Phys. Rev. A 83,

043619 (2011), URL https://link.aps.org/doi/10.1103/PhysRevA.83.043619.

[190] K. Brown, T. Bland, P. Comaron, and N. P. Proukakis, Phys. Rev. Research 3,

013097 (2021), URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.

013097.

[191] A. Roy, M. Ota, A. Recati, and F. Dalfovo, Phys. Rev. Research 3, 013161 (2021),

URL https://link.aps.org/doi/10.1103/PhysRevResearch.3.013161.

[192] N. Keepfer, I.-K. Liu, F. Dalfovo, and N. Proukakis, Phase transition dimensionality

crossover from two to three dimensions in a trapped ultracold atomic bose gas (2022),

URL https://arxiv.org/abs/2204.10120.

[193] V. Berezinskii, Sov. Phys. JETP 34, 610 (1972).

[194] J. M. Kosterlitz and D. J. Thouless, Journal of Physics C: Solid State Physics 6,

1181 (1973), URL https://doi.org/10.1088/0022-3719/6/7/010.

[195] C. J. Pethick and H. Smith, Bose–Einstein condensation in dilute gases (Cambridge

university press, 2008).

[196] W. Mullin, J. Low Temp. Phys. 106, 615 (1997), URL https://doi.org/10.1007/

BF02395928.

[197] J. O. Andersen, U. Al Khawaja, and H. T. C. Stoof, Phys. Rev. Lett. 88, 070407

(2002), URL https://link.aps.org/doi/10.1103/PhysRevLett.88.070407.

[198] U. Al Khawaja, J. O. Andersen, N. P. Proukakis, and H. T. C. Stoof, Phys. Rev.

A 66, 059902 (2002), URL https://link.aps.org/doi/10.1103/PhysRevA.66.

059902.

[199] U. Al Khawaja, N. P. Proukakis, J. O. Andersen, M. W. J. Romans, and H. T. C.

Stoof, Phys. Rev. A 68, 043603 (2003), URL https://link.aps.org/doi/10.

1103/PhysRevA.68.043603.

156

https://scipost.org/10.21468/SciPostPhys.8.3.039
https://doi.org/10.1038/nature07334
https://link.aps.org/doi/10.1103/PhysRevA.88.063620
https://link.aps.org/doi/10.1103/PhysRevA.83.043619
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013097
https://link.aps.org/doi/10.1103/PhysRevResearch.3.013161
https://arxiv.org/abs/2204.10120
https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1007/BF02395928
https://link.aps.org/doi/10.1103/PhysRevLett.88.070407
https://link.aps.org/doi/10.1103/PhysRevA.66.059902
https://link.aps.org/doi/10.1103/PhysRevA.68.043603


Bibliography

[200] D.S. Petrov, D.M. Gangardt, and G.V. Shlyapnikov, J. Phys. IV France 116, 5

(2004), URL https://doi.org/10.1051/jp4:2004116001.

[201] B. P. van Zyl, R. K. Bhaduri, and J. Sigetich, Journal of Physics B: Atomic, Molec-

ular and Optical Physics 35, 1251 (2002), URL https://iopscience.iop.org/

article/10.1088/0953-4075/35/5/311.

[202] R. N. Bisset and P. B. Blakie, Phys. Rev. A 80, 035602 (2009), URL https://link.

aps.org/doi/10.1103/PhysRevA.80.035602.

[203] F. Delfino and E. Vicari, Phys. Rev. A 96, 043623 (2017), URL https://link.aps.

org/doi/10.1103/PhysRevA.96.043623.

[204] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-

Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, et al., Phys. Rev. Lett.

87, 130402 (2001), URL https://link.aps.org/doi/10.1103/PhysRevLett.87.

130402.
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